Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(xy=\frac{x}{y}\)
=> xy.y = x
=> y2 = 1
=> \(y=\orbr{\begin{cases}1\\-1\end{cases}}\)
thay từng giá trị y = 1 ; y = -1 vào đẳng thức :
x + y = \(\frac{x}{y}\)
Với y = 1
=> x không có giá trị
Với y = -1
=> x = \(-\frac{1}{2}\)
Từ \(xy=x:y\)=> \(xy=\frac{x}{y}\)=> \(xy^2=x\)
=> \(y^2=1\) => \(y=\pm1\)
Thay \(y=1\) vào \(x-y=x.y\) ta có : \(x-1=x.1\)
=> \(x-1=x\)=> \(0x=1\)( vô lý) => loại
Thay \(y=-1\) vào \(x-y=x.y\)ta có: \(x-\left(-1\right)=x.\left(-1\right)\)
=> \(x+1=-x\)=> \(2x=-1\)
=> \(x=\frac{-1}{2}\)
\(v\text{ậy}\hept{\begin{cases}x=\frac{-1}{2}\\y=-1\end{cases}}\)
x - y = xy
\(\Rightarrow\)x = xy + y = y . ( x + 1 )
\(\Rightarrow\)x : y = x + 1 ( y \(\ne\)0 )
Theo bài ra : x : y = x - y
\(\Rightarrow\)x + 1 = x - y
\(\Rightarrow\)y = -1
Thay y = -1 vào x - y = xy , ta được :
x - ( -1 ) = x . ( -1 )
x + 1 = -x
2x = -1
x = \(\frac{-1}{2}\)
Vậy ...
Ta có:
x - y = xy = x/y
Xét xy = x : y
=> y.y = x : x
=> y^2 = 1
=> y = 1
=> x - 1 = x (vô lí)
a/ \(x^2+y^2=0\Rightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\) \(\Rightarrow A=0\)
b/ Do \(x=19\Rightarrow20=x+1\)
\(B=x^6-\left(x+1\right)x^5+\left(x+1\right)x^4-\left(x+1\right)x^3+\left(x+1\right)x^2-\left(x+1\right)x+20\)
\(B=x^6-x^6-x^5+x^5+x^4-x^4-x^3+x^3+x^2-x^2-x+20\)
\(B=20-x=20-19=1\)
c/ \(x+y+z=0\Rightarrow\left\{{}\begin{matrix}x+y=-z\\x+z=-y\\y+z=-x\end{matrix}\right.\)
\(C=\frac{\left(x+y\right)}{y}.\frac{\left(y+z\right)}{z}.\frac{\left(x+z\right)}{x}=\frac{-z}{y}.\frac{-x}{z}.\frac{-y}{x}=\frac{-xyz}{xyz}=-1\)
ta có:
\(x+y=x.y\)
\(\Rightarrow y=x.y-x=x.(y-1)\)
\(\Rightarrow x:y=y-1=x+y\)
\(\Rightarrow x=-1\)
\(thay\) \(x+y=x.y\)
\(\Rightarrow y-1=-y\Rightarrow2y=1\Rightarrow y=\dfrac{1}{2}\)
\(\Rightarrow x=-1;y=\dfrac{1}{2}\)
Ta có: \(x+y=xy\)=> \(x=xy-y=y\left(x-1\right)\)=>\(x:y=x-1\) (1)
Ta lại có x: y= x+ y ( 2)
Từ (1) và (2) suy ra \(y=-1\) . Từ đó có \(x=\dfrac{1}{2}\)
\(x\left(x+y+z\right)=-5\left(1\right);y\left(x+y+z\right)=9\left(2\right);z\left(x+y+z\right)=5\left(3\right)\)
Cộng vế với vế của (1);(2);(3) với nhau ta được (x+y+z)2=9 =>x+y+z=-3 hoặc x+y+z=3
TH1: x+y+z=-3
Thay x+y+z=-3 vào (1);(2) ta được x.(-3)=-5 => x=5/3; y.(-3)=9 => y=-3
x+y+z=(5/3)+(-3)+z=-3 => (5/3)+z=0 => z=-5/3
TH2: x+y+z=3
Thay x+y+z=3 vào (1);(2) ta được x.3=-5 => x=-5/3; y.3=9 => y=3
x+y+z=(-5/3)+3+z=3 => (-5/3)+z=0 => z=5/3
Vậy x=5/3;y=-3;z=-5/3 hoặc x=-5/3;y=3;z=-5/3
Theo đề ra ta có:
\(\frac{-5}{x}=\frac{9}{y}=\frac{5}{z}=x+y+z=\frac{9}{x+y+z}\)(áp dụng tính chất của dãy tỉ số bằng nhau)
\(\rightarrow\left(x+y+z\right)^2=9\rightarrow\orbr{\begin{cases}x+y+z=3\\x+y+z=-3\end{cases}}\)
\(\rightarrow\orbr{\begin{cases}x=\frac{-5}{3}\\x=\frac{5}{3}\end{cases},}\orbr{\begin{cases}y=3\\y=-3\end{cases},}\orbr{\begin{cases}z=\frac{5}{3}\\z=\frac{-5}{3}\end{cases}}\)
1
a/
[x+1].[x-2] < 0 => x+1 và x-2 trái dấu
mà x+1 > x-2
=> x+1 > 0 ; x-2 < 0
=> -1 < x < 2 , x thuộc Q
b/
T.tự -2/3 < x < 2 , x thuộc Q
2.
x+y = xy
=> y = xy -x = x.[y-1]
=> x : y = y-1 = x+y
=> x = -1
thay vào x+y = xy
=> y-1 = -y => 2y = 1 => y= 1/2
Vậy x= -1 ; y = 1/2
x-2y= 2(x+y)
=> x-2y = 2x+2y
=> -2y-2y= 2x-x
=> x= -4y
Thay x= -4y vào x-y= x/y
=> -4y-y = -4y/ y
=.> -5y= -4
=> y =4/5
=> x= -16/5
bạn ơi mk làm nhanh chỗ tìm x nha
chỗ tìm x bạn làm vậy nè: x =-4y hay x= -4 . 4/5 = -16/5