K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 1 2016

a) 7k là số nguyên tố

7k chia hết cho 7

7 là số nguyên tố

< = > 7k = 7

k = 1

b) 2k là số nguyên tố

Số ước của k là k + 1

Số nguyên tố có 2 ước 

< = > k + 1 = 2

k = 2 - 1  = 1

Vậy k = 1

4 tháng 1 2016

Ai li-ke cho mình đi để khỏi bị trừ điểm với !

12 tháng 12 2018

a, Với k ≥ 2 thì 7k có ít nhất 3 ước là 1,7,7k  nên 7k là hợp số ( không thỏa mãn).

Với k = 1 thì  7k = 7 là số nguyên tố.

Vậy k = 1.

b, k chia cho 5 có thể dư 0,1,2,3,4.

Với k chia cho 5 dư 1 thì k+14 ⋮ 5 và k+14 > 5 nên k+14 là hợp số ( loại).

Với k chia cho 5 dư 2 thì k+85 và k+8 > 5 nên k+8 là hợp số ( loại).

Với k chia cho 5 dư 3 thì k+125 và k+12 > 5 nên k+12 là hợp số ( loại).

Với k chia cho 5 dư 4 thì k+65 và k+6 > 5 nên k+6 là hợp số ( loại).

Với k chia hết cho 5 và k > 5 thì k là hợp số (loại )

Với k = 5. Thử thấy 5,11,13,17,19  đều là số nguyên tố.

Vậy k = 5.

15 tháng 10 2016

Ta có 7 và 11 là số nguyên tố.

=> k = 1

Nếu \(k>1\) thì 7k chia hết cho 7; 7k chia hết cho k. 

<=> 11k chia hết cho 11 và 11k chia hết cho k

Vậy k = 1

25 tháng 11 2017

Ta có 7 và 11 là số nguyên tố.
=> k = 1
Nếu k > 1 thì 7k chia hết cho 7; 7k chia hết cho k.
<=> 11k chia hết cho 11 và 11k chia hết cho k
Vậy k = 1

16 tháng 10 2019

12 tháng 4 2018

a) Gọi 2 số đó là : a ; b \(\left(a;b\inℕ^∗\right)\)

Theo bài ra ta có :

\(a+b=162\)( 1 ) 

\(ƯCLN\left(a,b\right)=18\)( 2 )

\(a=18x;b=18y\left(\left(x,y\right)=1\right)\)( 3 )

Từ ( 1 ) ; ( 2 ) và ( 3 )  suy ra :

\(18x+18y=162\)

\(\Rightarrow18.\left(x+y\right)=162\)

\(\Rightarrow x+y=162:18=9\)

Vì \(\left(x,y\right)=1\)nên :

\(x+y\in\left\{\left(4+5\right);\left(5+4\right);\left(1+8\right);\left(8+1\right);\left(7+2\right);\left(2+7\right)\right\}\)

Vậy \(\left(a;b\right)\in\left\{\left(72;90\right),\left(90;72\right),\left(18;162\right),\left(162;18\right),\left(126;36\right),\left(36;126\right)\right\}\)

b) Nếu \(p=3\Rightarrow p+2=5;p+4=7\)( chọn )

Nếu \(p\)chia cho 3 dư 1 \(\Rightarrow p+2⋮3\)( loại )

Nếu \(p\)chia cho 3 dư 2 \(\Rightarrow p+4⋮3\)( loại )

Vậy \(p=3\)

17 tháng 4 2020

a) theo cách làm của bạn trên

   b) Nếu P=3=> p> p+2=5 ; p+4+7 9  (chọn)    Nếu p chia cho 3 dư 1 => p+2 chia hết cho 3; Nếu p chia 3 dư 2=> p+4 chia hết cho 3. Vậy p=3 là hợp lý nhất.

6 tháng 8 2024

Bài 119

\(\overline{1a}\) là số nguyên tố nên a = 1; 3; 7; 9 vậy \(\overline{1a}\) = 11; 13; 17; 19

\(\overline{3a}\) là số nguyên tố nên a = 1; 7 vậy \(\overline{3a}\) = 31; 37

6 tháng 8 2024

   Bài 120 

\(\overline{5a}\) là số nguyên tố nên a = 3; 9 Vậy \(\overline{5a}\) = 53; 59

\(\overline{9a}\) là số nguyên tố nên a = 7 vậy \(\overline{9a}\) = 57