Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) (x2 - 2x - 1)(x - 3)
= x2(x - 3) - 2x(x - 3) - 1(x - 3)
= x3 - 3x2 - 2x2 + 6x - x + 3
= x3 - 5x2 + 5x + 3
2. (-x + 4)(-x2 + 4x - 1)
= -x(-x2 + 4x - 1) + 4(-x2 + 4x - 1)
= x3 - 4x2 + x - 4x2 + 16x - 4
= x3 - 8x2 + 17x - 4
3 ) (2x - 1)(x2 - 5x + 3)
= 2x(x2 - 5x + 3) - 1(x2 - 5x + 3)
= 2x3 - 10x2 + 6x - x2 + 5x - 3
= 2x3 - 11x2 + 11x - 3
Bài làm :
1) (x2 - 2x - 1)(x - 3)
= x2(x - 3) - 2x(x - 3) - 1(x - 3)
= x3 - 3x2 - 2x2 + 6x - x + 3
= x3 - 5x2 + 5x + 3
2) (-x + 4)(-x2 + 4x - 1)
= -x(-x2 + 4x - 1) + 4(-x2 + 4x - 1)
= x3 - 4x2 + x - 4x2 + 16x - 4
= x3 - 8x2 + 17x - 4
3 ) (2x - 1)(x2 - 5x + 3)
= 2x(x2 - 5x + 3) - 1(x2 - 5x + 3)
= 2x3 - 10x2 + 6x - x2 + 5x - 3
= 2x3 - 11x2 + 11x - 3
a/\(\left(x-1\right)\left(x^5+x^4+x^3+x^2+x+1\right).\)
\(=\left(x-1\right)\left[\left(x^5+x^4+x^3\right)+\left(x^2+x+1\right)\right]\)
\(=\left(x-1\right)\left[x^3\left(x^2+x+1\right)+\left(x^2+x+1\right)\right]\)
\(=\left(x-1\right)\left(x^2+x+1\right)\left(x^3+1\right)\)
\(=\left(x-1\right)\left(x^2+x+1\right)\left(x+1\right)\left(x^2-x+1\right)\)
\(=\left(x-1\right)\left(x+1\right)\left(x^2-x+1\right)\left(x^2+x+1\right)\)
\(=\left(x^2-1\right)\left(x^2-x+1\right)\left(x^2+x+1\right)\)
Câu b/ quên làm ạ :> Bù nè
b/ \(2\left(3x-1\right)\left(2x+5\right)-\left(4x-1\right)\left(3x-2\right)\)
\(=2\left(6x^2+15x-2x-5\right)-\left(12x^2-8x-3x+2\right)\)
\(=2\left(6x^2+13x-5\right)-\left(12x^2-11x+2\right)\)
\(=12x^2+26x-10-\left(12x^2-11x+2\right)\)
\(=12x^2+26x-10-12x^2+11x-2\)
\(=37x-12\)
Bài 1:
\(3a.\left(2a^2-ab\right)=6a^3-3a^2b\)
\(\left(4-7b^2\right).\left(2a+5b\right)=8a+20b-14ab^2-35b^3\)
Bài 2:
\(2x^2-6x+xy-3y=2x.\left(x-3\right)+y.\left(x-3\right)=\left(x-3\right).\left(2x+y\right)\)
Bài 3: Tại x = 3/2, y =1/3 thì Q = 67/9
Bài 4:
\(\left(\frac{1}{x+1}+\frac{2x}{1-x^2}\right).\left(\frac{1}{x-1}\right)\) \(\frac{1}{\left(x+1\right).\left(x-1\right)}+\frac{2x}{\left(1-x^2\right).\left(x-1\right)}=\frac{x-1}{\left(x+1\right).\left(x-1\right)^2}+\frac{-2x}{\left(x-1\right)^2.\left(x+1\right)}\)
= \(\frac{x-1-2x}{\left(x+1\right).\left(x-1\right)^2}=\frac{-\left(x+1\right)}{\left(x+1\right).\left(x-1\right)^2}=\frac{-1}{\left(x-1\right)^2}\)
a: \(=\dfrac{4x-8+2x+4-8}{\left(x-2\right)\left(x+2\right)}=\dfrac{6x-12}{\left(x-2\right)\left(x+2\right)}=\dfrac{6}{x+2}\)
b: \(=\dfrac{-x+7x-4}{3x-2}=\dfrac{6x-4}{3x-2}=2\)
c: \(=\dfrac{x}{2x+1}-\dfrac{1}{\left(2x+1\right)\left(2x-1\right)}-\dfrac{\left(x-2\right)}{2x-1}\)
\(=\dfrac{2x^2-x-1-\left(x-2\right)\left(2x+1\right)}{\left(2x+1\right)\left(2x-1\right)}\)
\(=\dfrac{2x^2-x-1-2x^2-x+4x+2}{\left(2x+1\right)\left(2x-1\right)}\)
\(=\dfrac{2x+1}{\left(2x+1\right)\left(2x-1\right)}=\dfrac{1}{2x-1}\)
d: \(=\dfrac{5}{2x-3}+\dfrac{2}{2x+3}+\dfrac{2x-33}{4x^2-99}\)
\(=\dfrac{10x+15+4x-6+2x-33}{\left(2x-3\right)\left(2x+3\right)}=\dfrac{16x-24}{\left(2x-3\right)\left(2x+3\right)}=\dfrac{8}{2x+3}\)
Bài 1:
a)
\(9x^2-49=0\)
\(9x^2-49+49=0+49.\)
\(9x^2=49\)
\(\frac{9x^2}{9}=\frac{49}{9}\)
\(x^2=\frac{49}{9}\)
\(x=\sqrt{\frac{49}{9}}\)
\(x=\frac{\sqrt{49}}{\sqrt{9}}\)
\(x=\frac{7}{3}\)hay \(x=2,33333...\)
b)
\(\left(x-1\right)\left(x+2\right)-x-2=0.\)
\(x^2+x-2-x-2.\)
\(x^2+\left(x-x\right)-\left(2+2\right)=\)\(0\)
\(x^2-4=0\)
\(x=\sqrt{4}\)
\(x=2\)
Bài 2:
a)
\(\frac{x}{x}-3+9-\frac{6x}{x^2}-3x.\)
\(=1-3+9-\frac{6x}{x^2}-3x.\)
\(=1-3+9-\frac{6}{x}-3x.\)
\(=7-\frac{6}{x}-3x\)
b)
\(6x-\frac{3}{x}\div4x^2-\frac{1}{3x^2}\)
\(=6x-\frac{3}{x}\div\frac{4}{1}x^2-\frac{1}{3x^2}.\)
\(=6x-\frac{3}{x}\times\frac{1}{4}x^2-\frac{1}{3x^2}\)
\(=6x-\frac{3x^2}{x4}-\frac{1}{3x^2}\)
\(=6x-\frac{3x}{4}-\frac{1}{3x^2}\)
\(=\frac{6x}{1}-\frac{3x}{4}-\frac{1}{3x^2}\)
\(=\frac{72x^3-36x^3-12x^2}{12x^2}\)
\(=\frac{36-12x^2}{12x^2}\)
Trả lời:
a, ( x + 1 )2 + ( x - 2 ) ( x + 3 ) - 4x
= x2 + 2x + 1 + x2 + 3x - 2x - 6 - 4x
= 2x2 - x - 5
b, ( x - 2 )2 + ( x + 1 )2 + 2 ( x - 2 ) ( - 1 - x )
= x2 - 4x - 4 + x2 + 2x + 1 + ( 2x - 4 ) ( - 1 - x )
= 2x2 - 2x - 3 - 2x - 2x2 + 4x + 4x
= 4x - 3
a) \(\left(x+1\right)^2+\left(x-2\right)\left(x+3\right)-4x\)
\(=\left(x^2+2x+1\right)+\left(x^2+x-6\right)-4x\)
\(=x^2+2x+1+x^2+x-6-4x\)
\(=2x^2-x-5\)
b) \(\left(x-2\right)^2+\left(x+1\right)^2+2\left(x-2\right)\left(-1-x\right)\)
\(=\left(x^2-4x+4\right)+\left(x^2+2x+1\right)+\left(2x-4\right)\left(-1-x\right)\)
\(=x^2-4x+4+x^2+2x+1+\left(-2x-2x^2+4+4x\right)\)
\(=x^2-4x+4+x^2+2x+1-2x-2x^2+4+4x\)
\(=9\)