K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2019

a) = x2 - 9 - ( x2 + 5x -2x -10 ) = x2 - 9 - x2 - 5x + 2x +10 = 1 - 3x

b) chịu

c) = x3 + 1 - ( 27 + x3 )= x3 + 1 - 27 -x3 = -26

d) = 8x3 + 27 - 8x3 + 2= 29

3 tháng 8 2019

bạn tình bày đầy đủ giúp mình được ko

25 tháng 10 2018

a, 1002+200.40+402

=1002+2.100.40+402

=(100+40)2

=1402=19600

29 tháng 10 2022

b: \(=x^2-9-\left(x^2+3x-10\right)\)

\(=x^2-9-x^2-3x+10=-3x+1\)

c: \(=\dfrac{2x^3-x^2+x-10x^2+5x-5}{2x^2-x+1}=x-5\)

d: \(=8x^3+27-8x^3+2=29\)

5 tháng 7 2018

1) a) \(\left(3x-1\right)\left(9x^2+3x+1\right)-4x\left(x-5\right)\)

\(=27x^3+9x^2+3x-9x^2-3x-1-4x^2+20x\)

\(=27x^3+\left(9x^2-9x^2-4x^2\right)+\left(3x-3x+20x\right)+\left(-1\right)\)

\(=27x^3-4x^2+20x-1\)

b)\(\left(7x+2\right)\left(3-4x\right)-\left(x+3\right)\left(x^2-3x+9\right)\)

\(=21x-28x^2+6-8x-x^3+3x^2-9x-3x^2+9x-27\)

\(=\left(21x-8x-9x+9x\right)+\left(-28x^2+3x^2-3x^2\right)\)\(+\left(6-27\right)\)\(+\left(-x^3\right)\)

\(=13x-28x^2-21-x^3\)

c)\(\left(4x+3\right)\left(4x-3\right)-\left(2-x\right)\left(4+2x+x^2\right)\)

\(=16x^2-12x+12x-9-8-4x-2x^2+4x+2x^2+x^3\)

\(=\left(16x^2-2x^2+2x^2\right)+\left(-12x+12x-4x+4x\right)\)\(+\left(-9-8\right)\)\(+x^3\)

\(=16x^2-17+x^3\)

d)\(\left(3x-8\right)\left(-5x+6\right)-\left(4x+1\right)\left(3x-2\right)\)

\(=-15x^2+18x+40x-48-12x^2+8x-3x+2\)

\(=\left(-15x^2-12x^2\right)+\left(18x+40x+8x-3x\right)\)\(+\left(-48+2\right)\)

\(=-27x^2+63x-46\)

e)\(\left(3x-6\right)4x-2x\left(3x+5\right)-4x^2\)

\(=12x^2-24x-6x^2-10x-4x^2\)

\(=\left(12x^2-6x^2-4x^2\right)+\left(-24x-10x\right)\)

\(=2x^2-34x\)

f)\(\left(5x-6\right)\left(6x-5\right)-x\left(3x+10\right)\)

\(=30x^2-25x-36x+30-3x^2-10x\)

\(=\left(30x^2-3x^2\right)+\left(-25x-36x-10x\right)+30\)

\(=27x^2-71x+30\)

5 tháng 7 2018

2) a)\(x\left(x+3\right)-x^2=6\)

\(\Rightarrow x^2+3x-x^2=6\)

\(\Rightarrow\left(x^2-x^2\right)+3x=6\)

\(\Rightarrow3x=6\)

\(\Rightarrow x=2\)

Vậy x=2

b) \(2x\left(x-5\right)+x\left(-2x-1\right)=6\)

\(\Rightarrow2x^2-10x-2x^2-x=6\)

\(\Rightarrow\left(2x^2-2x^2\right)+\left(-10x-x\right)=6\)

\(\Rightarrow-11x=6\)

\(\Rightarrow x=-\dfrac{6}{11}\)

\(\)Vậy \(x=-\dfrac{6}{11}\)

c) x(x+5)-(x+1)(x-2)=7

\(\Rightarrow x^2+5x-x^2+2x-x+2=7\)

\(\Rightarrow\left(x^2-x^2\right)+\left(5x+2x-x\right)=7-2\)

\(\Rightarrow6x=5\)

\(\Rightarrow x=\dfrac{5}{6}\)

Vậy x=\(\dfrac{5}{6}\)

d)\(\left(3x+4\right)\left(6x-3\right)-\left(2x+1\right)\left(9x-2\right)=10\)

\(\Rightarrow18x^2-9x+24x-12-18x^2+4x-9x+2=10\)

\(\Rightarrow\left(18x^2-18x^2\right)+\left(-9x+24x+4x-9x\right)+\left(-12+2\right)=10\)

\(\Rightarrow10x-10=10\)

\(\Rightarrow10x=20\)

\(\Rightarrow x=2\)

Vậy x=2

25 tháng 7 2018

\(a.\left(2x-3\right)\left(4x^2+6x+9\right)-\left(2x+3\right)\left(4x^2-6x+9\right)\\ =\left(2x\right)^3-3^3-\left[\left(2x\right)^3+3^3\right]\\ =8x^3-9-\left(8x^3+9\right)\\ =8x^3-9-8x^3-9=-18\)

\(b.\left(x+1\right)\left(x^2-x+1\right)-\left(x-1\right)\left(x^2+x+1\right)\\ =x^3+1-\left(x^3-1\right)\\ =x^3+1-x^3+1=2\)

\(c.\left(3x-1\right)\left(3x+1\right)-\left(3x-2\right)^2\\ =9x^2-1-\left(9x^2-12x+4\right)\\ =9x^2-1-9x^2+12x-4\\ =12x-5\)

\(d.\left(2x-3\right)^2-\left(2x+3\right)\left(2x-3\right)\\ =\left(2x-3\right)\cdot\left[\left(2x-3\right)-\left(2x+3\right)\right]\\ =\left(2x-3\right)\cdot\left(2x-3-2x-3\right)\\ =\left(2x-3\right)\cdot\left(-6\right)\\ =-12x\cdot18\)

\(e.\left(3x-4\right)^2-\left(2x+4\right)^2\\ =9x^2-24x+16-\left(4x^2+16x+16\right)\\ =9x^2-24x+16-4x^2-16x-16\\ =5x^2-40x\)

\(f.\left(3x-5\right)^3-\left(3x+5\right)^3\\ =27x^3-135x^2+225x-125-\left(27x^3+135x^2+225x+125\right)\\ =27x^3-135x^2+225x-125-27x^3-135x^2-225x-125\\ =-270x^2-250\)

\(g.\left(2x-1\right)^2-\left(3x-1\right)^2\\ =4x^2-4x+1-\left(9x^2-6x+1\right)\\ =4x^2-4x+1-9x^2+6x-1\\ =-5x^2+2x\)

\(h.\left(x-2y\right)\left(x^2+2xy+4y^2\right)+\left(x^3-6y^3\right)\\ =x^3-8y^3+x^3-6y^3\\ =2x^3-14y^3\)

11 tháng 7 2021

\(\left(x^2+3\right)\left(3-x^2\right)\)

\(\left(x^2+3\right)\left(-x^2+3\right)\)

\(\left(-x^2+3\right).x^2+3\left(-x^2+3\right)\)

\(-x^2.x^2+3x^2+3\left(-x^2+3\right)\)

\(-x^2.x^2+3x^2-3x^2+9\)

\(-x^2.x^2+9\)

11 tháng 7 2021

\(\left(2x+5\right)\left(2x-5\right)\)

\(2x\left(2x-5\right)+5\left(2x-5\right)\)

\(4x^2-10x+5\left(2x-5\right)\)

\(4x^2-10x+10x-25\)

\(4x^2-25\)

7 tháng 8 2020

a, (x4-2x3+2x-1):(x2-1) = \(\frac{\left(x^4-1\right)-\left(2x^3-2x\right)}{x^2-1}\) 

                                     = \(\frac{\left(x^2-1\right)\left(x^2+1\right)-2x\left(x^2-1\right)}{x^2-1}\)                                                                                                                                              =\(\frac{\left(x^2-1\right)\left(x^2+1-2x\right)}{x^2-1}\)

                                      = \(x^2+1-2x\)\(\left(x-1\right)^2\)

b, (8x3-6x2-5x+3):((4x+3) 

12 tháng 7 2019

\(a,\left(6x+1\right)\left(x+2\right)-2x\left(3x-5\right)\)

\(=6x^2+12x+x+2-6x^2+10x\)

\(=23x+2\)

12 tháng 7 2019

a) (6x + 1)(x + 2) - 2x(3x - 5)

= 6x2 + 12x + x + 2 - 6x2 + 10x

= (6x2 - 6x2) + (12x + x + 10x) + 2

= 23x + 2

b) (2x - 1)2 - (2x - 3)(2x + 3)

= 4x2 - 4x + 1 - 4x2 + 9

= (4x2 - 4x2) - 4x + (1 + 9)

= -4x + 10

c) (2x - 3)3  - (3x  + 1)(5 - 4x) - 16x2

= 8x3 - 36x2 + 54x - 15x + 12x2 - 5 + 4x - 16x2

= 8x3 - (36x2 - 12x2 + 16x2) + (54x - 15x + 4x) - 5

= 8x3 - 40x2 + 43x - 5

d) (3x + 2) - (x - 5) - x(3x - 13)

= 3x  + 2 - x + 5 - 3x2 + 13x

= (3x - x + 13x) + (2 + 5) - 3x2

= 15x + 7 - 3x2

3 tháng 11 2019

a) \(\left(6x^3+3x^2+4x+2\right):\left(3x^2+2\right)\)

\(=\left[3x^2\left(2x+1\right)+2\left(2x+1\right)\right]⋮\left(3x^2+2\right)\)

\(=\left[\left(3x^2+2\right)\left(2x+1\right)\right]⋮\left(3x^2+2\right)\)

\(=2x+1\)

b) \(\left(2x^3-22x^2-5x^2+60x+55x-150\right):\left(x-5\right)\)

\(=\left[\left(2x^3-22x^2+60x\right)-\left(5x^2-55x+150\right)\right]:\left(x-5\right)\)

\(=\left[2x\left(x^2-11x+30\right)-5\left(x^2-11x+30\right)\right]:\left(x-5\right)\)

\(=\left[\left(2x-5\right)\left(x^2-11x+30\right)\right]:\left(x-5\right)\)

\(=\left[\left(2x-5\right)\left(x^2-5x-6x+30\right)\right]:\left(x-5\right)\)

\(=\left[\left(2x-5\right)\left(x-5\right)\left(x-6\right)\right]:\left(x-5\right)\)

\(=\left(2x-5\right)\left(x-6\right)\)

\(=2x^2-17x+30\)

3 tháng 11 2019

d) \(\left(x^5+4x^3+3x^2-5x+15\right):\left(x^3-x+3\right)\)

\(=\left(x^5+5x^3+3x^2-x^3-5x+15\right):\left(x^3-x+3\right)\)

\(=\left[\left(x^5-x^3+3x^2\right)+\left(5x^3-5x^2+15\right)\right]:\left(x^3-x+3\right)\)

\(=\left[x^2\left(x^3-x+3\right)+5\left(x^3-x^2+3\right)\right]:\left(x^3-x+3\right)\)

\(=\left[\left(x^2+5\right)\left(x^3-x+3\right)\right]:\left(x^3-x+3\right)\)

\(=x^2+5\)