K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 12 2015

câu b nè

\(\frac{3x+1}{\left(x-1\right)^2}-\frac{1}{x+1}-\frac{x+3}{x^2-1}\)

=\(\frac{\left(3x+1\right)\left(x+1\right)}{\left(x-1\right)^2\left(x+1\right)}-\frac{\left(x-1\right)^2}{\left(x-1\right)^2\left(x+1\right)}-\frac{\left(x+3\right)\left(x-1\right)}{\left(x-1\right)^2\left(x+1\right)}\)

=\(\frac{\left(3x^2+x+3x+1\right)-\left(x^2-2x+1\right)-\left(x^2-x-3+3x\right)}{\left(x-1\right)^2\left(x+1\right)}\)

=\(\frac{3x^2+4x+1-x^2+2x-1-x^2-2x+3}{\left(x-1\right)^2\left(x+1\right)}=\frac{x^2+4x+3}{\left(x+1\right)\left(x-1^2\right)}\)

=\(\frac{\left(x+1\right)\left(x+3\right)}{\left(x+1\right)\left(x-1\right)^2}=\frac{x+3}{\left(x-1\right)^2}\)

12 tháng 2 2016

a/ x.(x + 1)(x2 + x + 1) = 42

=> (x2 + x)(x2 + x + 1) = 42

Đặt a = x2 + x ta đc:

a.(a + 1) = 42

=> a2 + a - 42 = 0

=> (a - 6)(a + 7) = 0

=> a = 6 hoặc a = -7

Với a = 6 => x2 + x = 6 => x2 + x - 6 = 0 => (x - 2)(x + 3) = 0 => x = 2 hoặc x = -3

Với a = -7 => x2 + x = -7 => x2 + x + 7 = 0 , mà x2 + x + 7 > 0 => pt vô nghiệm

Vậy x = 2 , x = -3

12 tháng 2 2016

b/ (3x - 1)2 - 5(2x + 1)2 + (6x - 3)(2x + 1)  = (x - 1)2

=> 9x2 - 6x + 1 - 5.(4x2 + 4x + 1) + (12x2 - 3) = x2 - 2x + 1

=> 9x2 - 6x + 1 - 20x2 - 20x - 5 + 12x2 - 3 - x2 + 2x - 1 = 0

=> - 24x - 8 = 0

=> -24x = 8

=> x = -1/3

Vậy x = -1/3

a: \(=\dfrac{4x-8+2x+4-8}{\left(x-2\right)\left(x+2\right)}=\dfrac{6x-12}{\left(x-2\right)\left(x+2\right)}=\dfrac{6}{x+2}\)

b: \(=\dfrac{-x+7x-4}{3x-2}=\dfrac{6x-4}{3x-2}=2\)

c: \(=\dfrac{x}{2x+1}-\dfrac{1}{\left(2x+1\right)\left(2x-1\right)}-\dfrac{\left(x-2\right)}{2x-1}\)

\(=\dfrac{2x^2-x-1-\left(x-2\right)\left(2x+1\right)}{\left(2x+1\right)\left(2x-1\right)}\)

\(=\dfrac{2x^2-x-1-2x^2-x+4x+2}{\left(2x+1\right)\left(2x-1\right)}\)

\(=\dfrac{2x+1}{\left(2x+1\right)\left(2x-1\right)}=\dfrac{1}{2x-1}\)

d: \(=\dfrac{5}{2x-3}+\dfrac{2}{2x+3}+\dfrac{2x-33}{4x^2-99}\)

\(=\dfrac{10x+15+4x-6+2x-33}{\left(2x-3\right)\left(2x+3\right)}=\dfrac{16x-24}{\left(2x-3\right)\left(2x+3\right)}=\dfrac{8}{2x+3}\)

20 tháng 11 2015

Nhớ ghi dấu ngoặc tránh giải sai. 

\(a.\)  \(\frac{x+4}{2x+6}+\frac{3}{x^2-9}\)

Ta có: 

\(2x+6=2\left(x+3\right)\)

\(x^2-9=\left(x-3\right)\left(x+3\right)\)

nên \(MTC:\)  \(2\left(x-3\right)\left(x+3\right)\)

Do đó:  \(\frac{x+4}{2x+6}+\frac{3}{x^2-9}=\frac{x+4}{2\left(x+3\right)}+\frac{3}{\left(x-3\right)\left(x+3\right)}=\frac{\left(x+4\right)\left(x-3\right)}{2\left(x-3\right)\left(x+3\right)}+\frac{2.3}{2\left(x-3\right)\left(x+3\right)}=\frac{x^2+x-12+6}{2\left(x-3\right)\left(x+3\right)}\)

\(=\frac{x^2+x-6}{2\left(x-3\right)\left(x+3\right)}=\frac{x^2-2x+3x-6}{2\left(x-3\right)\left(x+3\right)}=\frac{x\left(x-2\right)+3\left(x-2\right)}{2\left(x-3\right)\left(x+3\right)}=\frac{\left(x-2\right)\left(x+3\right)}{2\left(x-3\right)\left(x+3\right)}=\frac{x-2}{2\left(x-3\right)}\)

 

20 tháng 11 2015

tick mình đi mình giải cho nha

a: \(=x^3-5x^2-x^2+10x+\dfrac{3}{2}x-15=x^3-6x^2+\dfrac{23}{2}x-15\)

b: \(=5x^3-x^4-10x^2+2x^3+5x-x^2-5+x\)

\(=-x^4+7x^3-11x^2+6x-5\)

c: \(=\dfrac{x^3-3x^2+2x^2-6x-x+3}{x-3}=x^2+2x-1\)

 

22 tháng 6 2016

a) \(\left(x^2-1\right)\left(x^2+2x\right)=x^4+2x^3-x^2-2x\)

b)  \(\left(2x-1\right)\left(3x+2\right)\left(3-x\right)=6x^2-3x+4x-2\left(3-x\right)\)

                                                          \(=6x^2-3x+4x-6+2x\)

                                                            \(=6x^2+3x-6\)

c) \(\left(x+3\right)\left(x^2+3x-5\right)=x^3+3x^2+3x^2+9x-5x-15\)

                                                  \(=x^3+6x^2+4x-15\)

d) \(\left(x+1\right)\left(x^2-x+1\right)=x^3+x^2-x^2-x+x+1\)

                                                \(=x^3+1\)

e) \(\left(2x^3-3x-1\right)\left(5x+2\right)=10x^4-15x^2-5x+4x^3-6x-2\)

                                                       \(=10x^4+4x^3-15x^2-11x-2\)

f) \(\left(x^2-2x+3\right)\left(x-4\right)=x^3-2x^2+3x-4x^2+8x-12\)

                                                 \(=x^3-6x^2+11x-12\)

7 tháng 8 2019

a/\(\left(x-1\right)\left(x^5+x^4+x^3+x^2+x+1\right).\)

\(=\left(x-1\right)\left[\left(x^5+x^4+x^3\right)+\left(x^2+x+1\right)\right]\)

\(=\left(x-1\right)\left[x^3\left(x^2+x+1\right)+\left(x^2+x+1\right)\right]\)

\(=\left(x-1\right)\left(x^2+x+1\right)\left(x^3+1\right)\)

\(=\left(x-1\right)\left(x^2+x+1\right)\left(x+1\right)\left(x^2-x+1\right)\)

\(=\left(x-1\right)\left(x+1\right)\left(x^2-x+1\right)\left(x^2+x+1\right)\)

\(=\left(x^2-1\right)\left(x^2-x+1\right)\left(x^2+x+1\right)\)

7 tháng 8 2019

Câu b/ quên làm ạ :> Bù nè

b/ \(2\left(3x-1\right)\left(2x+5\right)-\left(4x-1\right)\left(3x-2\right)\)

\(=2\left(6x^2+15x-2x-5\right)-\left(12x^2-8x-3x+2\right)\)

\(=2\left(6x^2+13x-5\right)-\left(12x^2-11x+2\right)\)

\(=12x^2+26x-10-\left(12x^2-11x+2\right)\)

\(=12x^2+26x-10-12x^2+11x-2\)

\(=37x-12\)

a: \(\Leftrightarrow5x^2-20x-41=x^2-10x+25+4x^2+4x+1-x^2+2x+\left(x-1\right)^2\)

\(\Leftrightarrow5x^2-20x-41=4x^2-4x+26+x^2-2x+1\)

\(\Leftrightarrow5x^2-20x-41=5x^2-6x+27\)

=>-14x=68

hay x=-34/7

b: \(\Leftrightarrow x^2-25-x^3+6x^2-12x+8-7x^2+x^3+1=\left(x+3\right)^3-x^3-9x^2\)

\(\Leftrightarrow-12x-16=x^3+9x^2+27x+27-x^3-9x^2=27x+27\)

=>-39x=43

hay x=-43/39