K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 7 2021

Trả lời:

1) \(\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)=\left(\sqrt{x}\right)^2-2\sqrt{x}+\sqrt{x}-2=x-\sqrt{x}-2\)

2) \(\left(x+4\right)\left(x-2\right)-\left(x-3\right)^2=x^2-2x+4x-8-\left(x^2-6x+9\right)\)\(=x^2+2x-8-x^2+6x-9=8x-17\)

3)  \(3x\left(2x^3-3x^2+5\right)=6x^4-9x^3+15x\)

AH
Akai Haruma
Giáo viên
28 tháng 7 2019

a)

ĐKĐB: \(\left\{\begin{matrix} 2x-1\geq 0\\ x^2+2x-5\geq 0\end{matrix}\right.\)

PT \(\Leftrightarrow 2x-1=x^2+2x-5\) (bình phương 2 vế)

\(\Leftrightarrow x^2-4=0\Leftrightarrow (x-2)(x+2)=0\Rightarrow \left[\begin{matrix} x=2\\ x=-2\end{matrix}\right.\)

Thử lại vào ĐKĐB suy ra $x=2$ là nghiệm duy nhất.

b)

ĐKĐB: \( \left\{\begin{matrix} x(x^3-3x+1)\geq 0\\ x(x^3-x)\geq 0\end{matrix}\right.\)

PT \(\Leftrightarrow x(x^3-3x+1)=x(x^3-x)\) (bình phương)

\(\Leftrightarrow x(x^3-3x+1-x^3+x)=0\)

\(\Leftrightarrow x(1-2x)=0\Rightarrow \left[\begin{matrix} x=0\\ x=\frac{1}{2}\end{matrix}\right.\)

Thử lại vào ĐKĐB thấy $x=0$ là nghiệm duy nhất

AH
Akai Haruma
Giáo viên
28 tháng 7 2019

e)

ĐKXĐ: \(x\geq \frac{5}{3}\)

PT \(\Rightarrow (\sqrt{x+2}-\sqrt{2x-3})^2=3x-5\) (bình phương 2 vế)

\(\Leftrightarrow 3x-1-2\sqrt{(x+2)(2x-3)}=3x-5\)

\(\Leftrightarrow 2=\sqrt{(x+2)(2x-3)}\)

\(\Leftrightarrow 4=(x+2)(2x-3)\)

\(\Leftrightarrow 2x^2+x-10=0\)

\(\Leftrightarrow (x-2)(2x+5)=0\Rightarrow \left[\begin{matrix} x=2\\ x=\frac{-5}{2}\end{matrix}\right.\)

Kết hợp với ĐKXĐ suy ra $x=2$

f) Bạn xem lại đề.

a, \(\sqrt{x^2+2x-5}\)\(\sqrt{2x-1}\)( x \(\ge\frac{1}{2}\))

\(\Leftrightarrow x^2+2x-5=2x-1\)

\(\Leftrightarrow x^2=4\)

\(\Leftrightarrow\orbr{\begin{cases}x=2\left(tm\right)\\x=-2\left(ktm\right)\end{cases}}\)

#mã mã#

b, \(\sqrt{x\left(x^3-3x+1\right)}\)\(=\sqrt{x\left(x^3-x\right)}\)\(\left(x\ge1\right)\)

\(\Leftrightarrow x\left(x^3-3x+1\right)\)\(x\left(x^3-1\right)\)

\(\Leftrightarrow\)x( x3 - 3x + 1 ) - x ( x3 - 1 ) = 0

\(\Leftrightarrow\)x ( x3 - 3x + 1 - x3 + 1 ) = 0

\(\Leftrightarrow\)x( 2-3x ) = 0

\(\Leftrightarrow\orbr{\begin{cases}x=0\\2-3x=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=0\left(ktm\right)\\x=\frac{2}{3}\left(ktm\right)\end{cases}}\)

vậy pt vô nghiệm

#mã mã#

2 tháng 12 2019

a) \(\frac{3x+5}{2\left(x-1\right)}+\frac{4}{x-2}=\frac{\left(3x+5\right)\left(x-2\right)+4\cdot2\left(x-1\right)}{2\left(x-1\right)\left(x-2\right)}=\frac{3x^2-6x+5x-10+8x-8}{2\left(x-1\right)\left(x-2\right)}\)

\(=\frac{3x^2+7x-18}{2\left(x-1\right)\left(x-2\right)}\)

b) \(\frac{2x^2+1}{4x^2-2x}+\frac{3-3x}{1-2x}+\frac{3}{2x}=\frac{2x^2+1+4x\left(3-3x\right)+2\cdot3\left(1-2x\right)}{4x\left(1-2x\right)}=\frac{2x^2+1+12-12x+6-12x}{4x\left(1-2x\right)}\)\(=\frac{2x^2-24x+19}{4x\left(1-2x\right)}\)

Đề này... bạn xem lại đi. Chứ thế này thì dùng máy tính cũng không làm nổi T-T

20 tháng 12 2016

a. \(=\frac{x+1}{2.\left(x+3\right)}+\frac{2x+3}{x.\left(x+3\right)}=\frac{x^2+x+4x+6}{2x.\left(x+3\right)}=\frac{x^2+5x+6}{2x.\left(x+3\right)}=\frac{\left(x+2\right).\left(x+3\right)}{2x.\left(x+3\right)}=\frac{x+2}{2x}\)

b. =\(\frac{2.\left(x+3\right)}{x.\left(3x-1\right)}.\frac{-\left(3x-1\right)}{x.\left(x+3\right)}=\frac{-2}{x^2}\)

Chắc chắn đúng, mik nhaaaaaa

11 tháng 12 2019

\(a)=\frac{-2\left(x+3\right)}{x\left(1-3x\right)}.\frac{1-3x}{x\left(x+3\right)}\)

\(=\frac{-2}{x^2}\)

\(b)=\frac{\left(x+3\right)\left(x-3\right)}{x\left(x-3\right)}-\frac{x^2}{x\left(x-3\right)}+\frac{9}{x\left(x-3\right)}\)

\(=\frac{x^2-3x+3x-9-x^2+9}{x\left(x-3\right)}\)

\(=x\left(x-3\right)\)

\(c)=\frac{x+3}{\left(x-1\right)\left(x+1\right)}-\frac{1}{x\left(x+1\right)}\)

\(=\frac{\left(x+3\right).x}{x\left(x-1\right)\left(x+1\right)}-\frac{1.\left(x-1\right)}{x\left(x-1\right)\left(x+1\right)}\)

\(=\frac{x^2+3x-x+1}{x\left(x-1\right)\left(x+1\right)}\)

\(=\frac{x\left(x+3\right)-\left(x-1\right)}{x\left(x-1\right)\left(x+1\right)}\)

\(=\frac{x+3}{x+1}\)

# Sắp ik ngủ nên làm vậy hoi, ko chắc phần kq câu b và c đâu nha

\(a,\frac{x}{2\left(x-3\right)}+\frac{x}{2\left(x+1\right)}=\frac{2x}{\left(x+1\right)\left(x-3\right)}\)

\(\frac{x\left(x+1\right)}{2\left(x-3\right)\left(x+1\right)}+\frac{x\left(x-3\right)}{2\left(x+1\right)\left(x-3\right)}=\frac{4x}{2\left(x+1\right)\left(x-3\right)}\)

\(x\left(x+1\right)+x\left(x-3\right)=4x\)

\(x^2+x+x^2-3x=4x\)

\(2x^2-2x=4x\)

\(2x^2-2x-4x=0\)

\(2x\left(x-3\right)=0\)

\(2x=0\Leftrightarrow x=0\)

hoặc 

\(x-3=0\Leftrightarrow x=3\)

22 tháng 4 2020

b) \(ĐKXĐ:x\ne\pm4\)

\(5+\frac{96}{x^2-16}=\frac{2x-1}{x+4}-\frac{3x-1}{4-x}\)

\(\Leftrightarrow5+\frac{96}{x^2-16}=\frac{2x-1}{x+4}+\frac{3x-1}{x-4}\)

\(\Leftrightarrow\frac{5\left(x^2-16\right)}{x^2-16}+\frac{96}{x^2-16}=\frac{\left(2x-1\right)\left(x-4\right)}{x^2-16}+\frac{\left(3x-1\right)\left(x+4\right)}{x^2-16}\)

\(\Rightarrow5\left(x^2-16\right)+96=\left(2x-1\right)\left(x-4\right)+\left(3x-1\right)\left(x+4\right)\)

\(\Leftrightarrow5x^2-80+96=2x^2-9x+4+3x^2+11x-4\)

\(\Leftrightarrow5x^2-2x^2-3x^2+9x-11x=4-4+80-96\)

\(\Leftrightarrow-2x=-16\)\(\Leftrightarrow x=8\)( thoả mãn ĐKXĐ )

Vậy tập nghiệm của phương trình là: \(S=\left\{8\right\}\)

a)\(\left(2x^2-3x\right)\left(5x^2-2x+1\right)\)

\(=2x^2\left(5x^2-2x+1\right)-3x\left(5x^2-2x+1\right)\)

\(=10x^4-4x^3+2x^2-15x^3+6x^2-3x\)

\(=10x^4-19x^3+8x^2-3x\)

19 tháng 8 2020

a. \(\left(2x^2-3x\right)\left(5x^2-2x+1\right)\)

\(=10x^4-4x^3+2x^2-15x^3+6x^2-3x\)

\(=10x^4-19x^3+8x^2-3x\)

b. \(\left(2x^4-x^3+3x^2\right):\left(\frac{1}{3}x^2\right)\)

\(=\left(2x^4-x^3+3x^2\right).\frac{3}{x^2}\)

\(=0,6x^2-3x+0,9\)