K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 1 2022

(153y2-6x2y-3x2y2):6x2y

=\(\dfrac{5}{2}\)xy-1-\(\dfrac{1}{2}\)y

(4x2-9y2):(2x-3y)

=(2x-3y)(2x+3y):(2x-3y)

=2x+3y

25 tháng 10 2020

1. Ta có : 2x4 - 3x3 - 3x2 + 6x - 2

= 2x4 - 2x3 - x3 + x2 - 4x2 + 4x + 2x - 2

= 2x3( x - 1 ) - x2( x - 1 ) - 4x( x - 1 ) + 2( x - 1 )

= ( x - 1 )( 2x3 - x2 - 4x + 2 )

= ( x - 1 )[ x2( 2x - 1 ) - 2( 2x - 1 ) ]

= ( x - 1 )( 2x - 1 )( x2 - 2 )

=> ( 2x4 - 3x3 - 3x2 + 6x - 2 ) : ( x2 - 2 ) = ( x - 1 )( 2x - 1 ) = 2x2 - 3x + 1

2. \(\left(15x^4y^6-12x^3y^4-18x^2y^3\right)\div\left(-6x^2y^2\right)\)

\(=\frac{15x^4y^6}{-6x^2y^2}-\frac{12x^3y^4}{-6x^2y^2}-\frac{18x^2y^3}{-6x^2y^2}\)

\(=-\frac{5}{2}x^2y^4+2xy^2+3y\)

19 tháng 8 2017

(15x3y2-6x2y-3x2y2):6x2y

=\(\dfrac{15x^3y^2-6x^2y-3x^2y^2}{6x^2y}\)

=\(\dfrac{15x^3y^2}{6x^2y}\)-\(\dfrac{6x^2y}{6x^2y}\)-\(\dfrac{3x^2y2}{6x^2y}\)

=\(\dfrac{5xy}{2}\)-1-\(\dfrac{y}{2}\)

9 tháng 12 2017

a) \(\left(2x-y\right)\left(4x^2-2xy+y^2\right)\)

\(=\left(2x-y\right)\left(2x-y\right)^2\)

\(=\left(2x-y\right)^3\)

b) \(\left(6x^5y^2-9x^4y^3+15x^3y^4\right):3x^3y^2\)

\(=2x^2-3xy+5y^2\)

những câu khác tương tự

4 tháng 8 2018

a) \(\dfrac{6x^2y^3-2x^2y+6xy}{6xy}\)

\(=\dfrac{6x^2y^3}{6xy}-\dfrac{2x^2y}{6xy}+\dfrac{6xy}{6xy}\)

\(=xy^2-\dfrac{x}{3}+1\)

b) \(\dfrac{4\left(x+y\right)^3}{2\left(x+y\right)}\)

\(=\dfrac{2\left(x+y\right).2\left(x+y\right)^2}{2\left(x+y\right)}\)

\(=2\left(x+y\right)^2\)

c) \(\dfrac{8x^3+27y^3}{2x+3y}\)

\(=\dfrac{\left(2x\right)^3+\left(3y\right)^3}{2x+3y}\)

\(=\dfrac{\left(2x+3y\right)\left[\left(2x\right)^2-2x.3y+\left(3y\right)^2\right]}{2x+3y}\)

\(=4x^2-6xy+9y^2\)

d) \(\dfrac{48x^4y^3-12x^2y^5+6x^2y^2}{3x^2y^2}\)

\(=\dfrac{48x^4y^3}{3x^2y^2}-\dfrac{12x^2y^5}{3x^2y^2}+\dfrac{6x^2y^2}{3x^2y^2}\)

\(=16x^2y-4y^3+2\)

26 tháng 12 2018

1) 4x\(^2\).(5x3+2x-1)

= 20x\(^5\)+8x\(^3\)-4x\(^2\).

2) 4x\(^3\): x2

= 4x

3) ( 15x2y3-10x3y3+6xy): 5xy

= 3xy2-2x2y2+\(\dfrac{6}{5}\)

4) (5x3+14x2+12x+8 ): (x+2)

= 5x2+4x+4

5)\(\dfrac{7}{2x}\)+\(\dfrac{11}{3y^2}\)

=\(\dfrac{7.3y^2+11.2x}{6xy^2}\) =\(\dfrac{21y^2+22x}{6xy^2}\) = \(\dfrac{21+22}{6}\) =\(\dfrac{43}{6}\)

6) \(\dfrac{x}{x+2}\) +\(\dfrac{3}{\left(x+2\right)\left(4x-7\right)}\)

7)\(\dfrac{3}{x-y}\)-\(\dfrac{2x^2}{x+y}\)

= \(\dfrac{3\left(x+y\right)-2\left(x+y\right)}{\left(x-y\right)\left(x+y\right)}\)=\(\dfrac{3x+3y-2x-2y}{\left(x-y\right)\left(x+y\right)}\)=\(\dfrac{x+y}{\left(x-y\right)\left(x+y\right)}\)=\(\dfrac{1}{x-y}\).

8)\(\dfrac{1}{2}\)x2y2.(2x+y)(2x-y)

= \(\dfrac{1}{2}\)x2y2.(4x2-2xy+2xy-y2)

= \(\dfrac{1}{2}\)x2y2.(4x2-y2)

= 2x4y2-\(\dfrac{1}{2}\)x2y4

9) (x-\(\dfrac{1}{2}\)).(x+\(\dfrac{1}{2}\)).(4x-1)

= x2.(4x-1)

= 4x3-x2

10)\(\dfrac{3x}{2x+6}\)+\(\dfrac{6-x}{2x^2+6x}\)

= \(\dfrac{3x}{2\left(x+3\right)}\)+\(\dfrac{6-x}{2x\left(x+3\right)}\)= \(\dfrac{3x^2+6-x}{2x\left(x+3\right)}\)=\(\dfrac{3-x}{3}\)= -x

11) x2-\(\dfrac{1}{2x-2}\)+3x+\(\dfrac{3}{1-x^2}\)

12)\(\dfrac{x^2}{x^2-y^2}\)-\(\dfrac{x-y}{x^2-y^2}\)

= \(\dfrac{x^2-xy}{\left(x-y\right)\left(x+y\right)}\)=\(\dfrac{x\left(x-y\right)}{\left(x-y\right)\left(x+y\right)}\)= \(\dfrac{x}{x+y}\)

26 tháng 12 2018

cảm ơn bạn nhé ^^

9 tháng 6 2019

\(a,\left(2x-y\right)\left(4x^2-2xy+y^2\right)=\left(2x-y\right)\left(2x-y\right)^2=\left(2x-y\right)^3\)

\(b,\left(6x^5y^2-9x^4y^3+15x^3y^4\right):3x^3y^2=2x^2-3xy+5y^2\)

\(c,\left(2x^3-21x^2+67x-60\right):\left(x-5\right)=\left(2x^3-10x^2-11x^2+55x+12x-60\right):x-5=\left[2x^2\left(x-5\right)-11x\left(x-5\right)+12\left(x-5\right)\right]:\left(x-5\right)=\left(x-5\right)\left(2x^2-11x+12\right)\left(x-5\right):\left(x-5\right)=2x^2-11x+12\)

14 tháng 2 2020

Giải

1) 3xy2 : 5x = \(\frac{3}{5}\)y2

2) 15x4yz3 : 4xyz = \(\frac{15}{4}\)x3z2

3) (4x2y2 - 12xy3 - 7x) : 3x = \(\frac{4}{3}\)xy2 - 4y3 - \(\frac{7}{3}\)

4) (14x4y2 - 12xy3 - x) : 4x = \(\frac{7}{2}\)x3y2 - 3y3 - \(\frac{1}{4}\)

5) (6x2 + 13x - 5) : (2x + 5) = (3x - 1)(2x + 5) : (2x + 5) = 3x - 1

6) (2x4 + x3 - 5x2 - 3x - 3) : (x2 - 3)
= 2x4 + x2 - 6x2 + x3 - 3 - 3x : x2 - 3
= x2(2x2 + x + 1) - 3(2x2 + x + 1) : x2 - 3
= (2x2 + x + 1)(x2 - 3) : x2 - 3

= 2x2 + x + 1