Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thực hiện phép tính
\(\left(15x^4y^6-12x^3y^4-18x^2y^3\right)\): \(\left(-6x^2y^2\right)\)
\(=\dfrac{-5}{2}x^2y^3+2xy^2+3y\)
Giải
1) 3xy2 : 5x = \(\frac{3}{5}\)y2
2) 15x4yz3 : 4xyz = \(\frac{15}{4}\)x3z2
3) (4x2y2 - 12xy3 - 7x) : 3x = \(\frac{4}{3}\)xy2 - 4y3 - \(\frac{7}{3}\)
4) (14x4y2 - 12xy3 - x) : 4x = \(\frac{7}{2}\)x3y2 - 3y3 - \(\frac{1}{4}\)
5) (6x2 + 13x - 5) : (2x + 5) = (3x - 1)(2x + 5) : (2x + 5) = 3x - 1
6) (2x4 + x3 - 5x2 - 3x - 3) : (x2 - 3)
= 2x4 + x2 - 6x2 + x3 - 3 - 3x : x2 - 3
= x2(2x2 + x + 1) - 3(2x2 + x + 1) : x2 - 3
= (2x2 + x + 1)(x2 - 3) : x2 - 3
= 2x2 + x + 1
a) \(\dfrac{6x^2y^3-2x^2y+6xy}{6xy}\)
\(=\dfrac{6x^2y^3}{6xy}-\dfrac{2x^2y}{6xy}+\dfrac{6xy}{6xy}\)
\(=xy^2-\dfrac{x}{3}+1\)
b) \(\dfrac{4\left(x+y\right)^3}{2\left(x+y\right)}\)
\(=\dfrac{2\left(x+y\right).2\left(x+y\right)^2}{2\left(x+y\right)}\)
\(=2\left(x+y\right)^2\)
c) \(\dfrac{8x^3+27y^3}{2x+3y}\)
\(=\dfrac{\left(2x\right)^3+\left(3y\right)^3}{2x+3y}\)
\(=\dfrac{\left(2x+3y\right)\left[\left(2x\right)^2-2x.3y+\left(3y\right)^2\right]}{2x+3y}\)
\(=4x^2-6xy+9y^2\)
d) \(\dfrac{48x^4y^3-12x^2y^5+6x^2y^2}{3x^2y^2}\)
\(=\dfrac{48x^4y^3}{3x^2y^2}-\dfrac{12x^2y^5}{3x^2y^2}+\dfrac{6x^2y^2}{3x^2y^2}\)
\(=16x^2y-4y^3+2\)
1: \(=\dfrac{x^2\cdot4xy^2}{x^2}=4xy^2\)
2: \(=\dfrac{3x\left(x-2\right)}{-\left(x-2\right)}=-3x\)
3: \(=\dfrac{\left(x-2\right)\left(x^2+2x+4\right)}{x^2+2x+4}=x-2\)
6: \(\dfrac{5\left(x-y\right)^4-3\left(x-y\right)^3+4\left(x-y\right)^2}{\left(x-y\right)^2}=5\left(x-y\right)^2-3\left(x-y\right)+4\)
\(a,\left(2x-y\right)\left(4x^2-2xy+y^2\right)=\left(2x-y\right)\left(2x-y\right)^2=\left(2x-y\right)^3\)
\(b,\left(6x^5y^2-9x^4y^3+15x^3y^4\right):3x^3y^2=2x^2-3xy+5y^2\)
\(c,\left(2x^3-21x^2+67x-60\right):\left(x-5\right)=\left(2x^3-10x^2-11x^2+55x+12x-60\right):x-5=\left[2x^2\left(x-5\right)-11x\left(x-5\right)+12\left(x-5\right)\right]:\left(x-5\right)=\left(x-5\right)\left(2x^2-11x+12\right)\left(x-5\right):\left(x-5\right)=2x^2-11x+12\)
a ) \(\left(x+1\right)\left(x-2\right)=x^2-2x+x-2=x^2-x-2\)
b ) \(\left(4x^4y^4-12x^2y^2\right):4x^2y^2=x^2y^2-3\)
c ) \(\frac{3x^2-1}{2x}+\frac{x^2+1}{2x}=\frac{3x^2-1+x^2+1}{2x}=\frac{4x^2}{2x}=2x\)
d ) \(\frac{x^2}{x-1}+\frac{2x}{1-x}+\frac{1}{x-1}=\left(\frac{x^2}{x-1}+\frac{1}{x-1}\right)+\frac{2x}{1-x}\)
\(=\frac{x^2+1}{x-1}+\frac{2x}{1-x}=\frac{x^2+1}{x-1}+\frac{-2x}{x-1}=\frac{x^2+1-2x}{x-1}=\frac{\left(x-1\right)^2}{x-1}=x-1\)
a) .......=x2-x-2
b) .........=x2y2-3
c) .......=(3x2-1+x2+1)/2x=4x2/2x=2x
d) x2 /(x-1)+(-2x)/(x-1)+1/(x-1)=(x2-2x+1)/(x-1)=(x-1)2/(x-1)=x-1
e)...
x-y=4
=> x2-2xy+y2=16
<=> 106-2xy =16 (vì x2+y2 =106)
=>xy=(106-16)/2=45
ta có x3 -y3 =(x-y)(x2+xy+y2 )
=4(106+45)=604
1. Ta có : 2x4 - 3x3 - 3x2 + 6x - 2
= 2x4 - 2x3 - x3 + x2 - 4x2 + 4x + 2x - 2
= 2x3( x - 1 ) - x2( x - 1 ) - 4x( x - 1 ) + 2( x - 1 )
= ( x - 1 )( 2x3 - x2 - 4x + 2 )
= ( x - 1 )[ x2( 2x - 1 ) - 2( 2x - 1 ) ]
= ( x - 1 )( 2x - 1 )( x2 - 2 )
=> ( 2x4 - 3x3 - 3x2 + 6x - 2 ) : ( x2 - 2 ) = ( x - 1 )( 2x - 1 ) = 2x2 - 3x + 1
2. \(\left(15x^4y^6-12x^3y^4-18x^2y^3\right)\div\left(-6x^2y^2\right)\)
\(=\frac{15x^4y^6}{-6x^2y^2}-\frac{12x^3y^4}{-6x^2y^2}-\frac{18x^2y^3}{-6x^2y^2}\)
\(=-\frac{5}{2}x^2y^4+2xy^2+3y\)