Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình làm ngắn gọn nhé.
\(A=1+2+2^2+...+2^{50}\)
\(\Rightarrow2A=2+2^2+...+2^{51}\)
\(\Rightarrow2A-A=2+2^2+...+2^{51}-1-2-2^2-...-2^{50}\)
\(\Rightarrow A=2^{51}-1\)
\(B=1+3+...+3^{66}\)
\(3B=3+3^2+...+3^{67}\)
\(2B=3+3^2+...+3^{67}-1-3-...-3^{66}\)
\(2B=3^{67}-1\)
\(B=\frac{3^{67}-1}{2}\)
1. Tìm x
a) 1+2+3+...+x = 210
=> \(\frac{x\left(x+1\right)}{2}=210\)
=> x = 20
b) \(32.3^x=9.3^{10}+5.27^3\)
=>\(32.3^x=9.3^{10}+5.3^9\)(\(27^3=\left(3^3\right)^3=3^9\))
=>\(32.3^x=9.3.3^9+5.3^9\)
=>\(32.3^x=3^9\left(9.3+5\right)\)
=>\(32.3^x=3^9.32\)
=>x = 9
2.
Ta có 2A = 3A - A
=> 2A = \(3\left(1+3+3^2+3^3+....+3^{10}\right)\)\(-\)\(1-3-3^2-3^3-....-3^{10}\)
=> 2A = \(3+3^2+3^3+.....+3^{11}-\)\(1-3-3^2-3^3-...-3^{10}\)
=> 2A = \(3^{11}-1\)
=> 2A+1 = \(3^{11}-1+1\)=\(3^{11}\)
=> n = 11
Ta có : a)1 + 2 + 3 + ... + x = 210
=> \(\frac{x\left(x+1\right)}{2}=210\)
=> x(x + 1) = 420
=> x(x + 1) = 20.21
=> x = 20
2A=2+22+23+24+...+211
2A—A=(2+22+23+24+....+211)—(1+2+22+23+...+210)
A=211—1
Ta có A = 2A - A
= \(2\left(1+2+2^2+2^3+...+2^{10}\right)\)- \(\left(1+2+2^2+2^3+....+2^{10}\right)\)
=\(2+2^2+2^3+2^4+.....+2^{11}\)\(-1-2-2^2-2^3-...-2^{10}\)
=\(2^{11}-1\)(Các số còn lại đã trừ hết cho nhau)
ĐẦU BÀI SAI ............................................................................................................................RỒI !
Đặt \(A=1+3+3^2+3^3+...+3^{2017}\)
\(3A=3\left(1+3+3^2+3^3+...+3^{2017}\right)\)
\(=3+3^2+3^3+3^4+...+3^{2018}\)\(3A-A=\left(3+3^2+3^3+3^4+...+3^{2018}\right)-\left(1+3+3^2+3^3+...+3^{2017}\right)\)\(2A=3^{2018}-1\Rightarrow A=\frac{3^{2018}-1}{2}\)
Vậy \(A=\frac{3^{2018}-1}{2}\)
gọi bieu thuc tren la A
A= 1+3+3^2+..+3^2017
3A= 3.(1+3+362+..+3^2017)
3A=3+3^2+3^3+...+3^2018
3A - A= (3+ 3^2+3^3+...+3^2018) - (1+3+3^2+...+3^2017)
2A= 3^2018 - 1
=> A= \(\frac{3^{2018}-1}{2}\)