Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Tìm x
a) 1+2+3+...+x = 210
=> \(\frac{x\left(x+1\right)}{2}=210\)
=> x = 20
b) \(32.3^x=9.3^{10}+5.27^3\)
=>\(32.3^x=9.3^{10}+5.3^9\)(\(27^3=\left(3^3\right)^3=3^9\))
=>\(32.3^x=9.3.3^9+5.3^9\)
=>\(32.3^x=3^9\left(9.3+5\right)\)
=>\(32.3^x=3^9.32\)
=>x = 9
2.
Ta có 2A = 3A - A
=> 2A = \(3\left(1+3+3^2+3^3+....+3^{10}\right)\)\(-\)\(1-3-3^2-3^3-....-3^{10}\)
=> 2A = \(3+3^2+3^3+.....+3^{11}-\)\(1-3-3^2-3^3-...-3^{10}\)
=> 2A = \(3^{11}-1\)
=> 2A+1 = \(3^{11}-1+1\)=\(3^{11}\)
=> n = 11
Ta có : a)1 + 2 + 3 + ... + x = 210
=> \(\frac{x\left(x+1\right)}{2}=210\)
=> x(x + 1) = 420
=> x(x + 1) = 20.21
=> x = 20
13 - 12 + 11 + 10 - 9 + 8 - 7 + 5 -4 + 3 + 2 - 1
=13
k nha
nan ni do
13 - 12 + 11 - 10 - 9 + 8 - 7 - 6 + 5 - 4 + 3 + 2 - 1
= ( 13 - 12 + 11 - 10 + 8 ) - ( 9 + 1 ) - ( 6 + 4) + ( 3 + 2 + 5 ) - 7
= 10 - 10 - 10 + 10 - 7
= ( 10 - 10 ) - ( 10 - 10 ) - 7
= 0 - 0 - 7
= - 7
Ta có: A = \(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}<\frac{1}{1^2}+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
\(\Rightarrow\) A < \(1+\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\right)\)
\(\Rightarrow\) A < \(1+\left(1-\frac{1}{50}\right)\)
\(\Rightarrow\) A < 1 + 49/50
Mà 1+49/50 < 2 nên A < 1+49/50 < 2
\(\Rightarrow\) A < 2
\(\text{Đặt S= biểu thức cần tính}\)
\(\Rightarrow3S=1.2.3+2.3.3+3.4.3+...+1999.2000.3\)
\(\Rightarrow3S=1.2.3+2.3\left(4-1\right)+3.4\left(5-2\right)+........+1999.2000\left(2001-1998\right)\)
\(\Rightarrow3S=1.2.3-1.2.3+2.3.4-2.3.4+......+1999.2000.2001\)
\(\Rightarrow3S=1999.2000.2001\Rightarrow S=\frac{1999.2000.2001}{3}=2666666000\)
\(2.\left(2x-\frac{4}{3}\right)^2+\frac{1}{4}=\frac{1}{2}\)
\(\Rightarrow\left(2x-\frac{4}{3}\right)^2=\frac{1}{2}-\frac{1}{4}\)
\(\Rightarrow\left(2x-\frac{4}{3}\right)^2=\frac{1}{4}\)
\(\Rightarrow\left(2x-\frac{4}{3}\right)=\sqrt{\frac{1}{4}}\)
\(\Rightarrow\left(2x-\frac{4}{3}\right)=\frac{1}{2}\)
\(\Rightarrow2x=\frac{1}{2}+\frac{4}{3}\)
\(\Rightarrow2x=\frac{11}{6}\)
\(\Rightarrow x=\frac{11}{6}\div2\)
\(\Rightarrow x=\frac{11}{6}\times\frac{1}{2}\)
\(\Rightarrow x=\frac{11}{12}\)
ta đặt
\(A=2+2^2+2^3+..+2^x\)
\(\Rightarrow2A=2^2+2^3+..+2^x+2^{x+1}=\left(2+2^2+2^3+..+2^x\right)+2^{x+1}-1\)
\(\Leftrightarrow2A=A+2^{x+1}-1\Rightarrow A=2^{x+1}-1=2^{106}-1\)
\(\Rightarrow x+1=106\Leftrightarrow x=105\)
2A=2+22+23+24+...+211
2A—A=(2+22+23+24+....+211)—(1+2+22+23+...+210)
A=211—1
Ta có A = 2A - A
= \(2\left(1+2+2^2+2^3+...+2^{10}\right)\)- \(\left(1+2+2^2+2^3+....+2^{10}\right)\)
=\(2+2^2+2^3+2^4+.....+2^{11}\)\(-1-2-2^2-2^3-...-2^{10}\)
=\(2^{11}-1\)(Các số còn lại đã trừ hết cho nhau)