Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a) \(A=1+3+3^2+3^3+...+3^{100}\)
\(\Rightarrow 3A=3+3^2+3^3+...+3^{101}\)
Trừ theo vế:
\(\Rightarrow 3A-A=(3+3^2+3^3+..+3^{101})-(1+3+3^2+...+3^{100})\)
\(2A=3^{101}-1\Rightarrow A=\frac{3^{101}-1}{2}\)
b) \(B=2^{100}-2^{99}+2^{98}-2^{97}+...+2^2-2\)
\(\Rightarrow 2B=2^{101}-2^{100}+2^{99}-2^{98}+...+2^3-2^2\)
Cộng theo vế:
\(\Rightarrow B+2B=2^{201}-2\)
\(\Rightarrow B=\frac{2^{101}-2}{3}\)
c) Ta có:
\(C=3^{100}-3^{99}+3^{98}-3^{97}+...+3^2-3+1\)
\(\Rightarrow 3C=3^{101}-3^{100}+3^{99}-3^{98}+...+3^3-3^2+3\)
Cộng theo vế:
\(C+3C=(3^{100}-3^{99}+3^{98}-....+3^2-3+1)+(3^{101}-3^{100}+3^{99}-....+3^3-3^2+3)\)
\(4C=3^{101}+1\Rightarrow C=\frac{3^{101}+1}{4}\)
A = 2100 - 299 + 298 - 297 + ... + 22 - 2
= ( 2100 + 298 + ... + 22 ) - ( 299 + 297 + ... + 2 )
= ( 2100 + 298 + ... + 22 ) - 2( 299 + 297 + ... + 2 ) + ( 299 + 297 + ... + 2 )
= 299 + 297 + ... + 2
=> 4A = 2103 + 299 + ... + 23
=> 3A = 2103 - 2
=> A = \(\frac{2^{103}-2}{3}\)
a) \(A=2^{100}-2^{99}+2^{98}-2^{97}+...+2^2-2\)
\(2A=2^{101}-2^{100}+2^{99}-2^{98}+...+2^3-2^2\)
\(\Rightarrow A+2A=2^{101}-2\)
\(A\left(1+2\right)=2^{101}-2\)
\(A.3=2^{101}-2\)
\(A=\frac{2^{101}-2}{3}\)
b) \(B=3^{100}-3^{99}+3^{98}-3^{97}+...+3^2-3\)
\(3B=3^{101}-3^{100}+3^{99}-3^{98}+...+3^3-3^2\)
\(\Rightarrow B+3B=3^{101}-3\)
\(B\left(1+3\right)=3^{101}-3\)
\(4B=3^{101}-3\)
\(B=\frac{3^{101}-3}{4}\)
Vế A
Ta có : A = 2100−299+298−297+...+22−2
2A = \(2^{101}-2^{100}+2^{99}-2^{98}+...+2^3-2^2\)
=> 2A + A = 3A = \(2^{100}-2\Rightarrow A=\dfrac{2^{100}-2}{3}\)
=================
B làm tương tự , nhân 3 lên rồi cộng lại là ra
a) A =1+3+32+33+...+3100
3A = 3 + 32+33+...+3101
3A-A=( 3 + 32+33+...+3101)-(1+3+32+33+...+3100)
2A = 3101-1
A = \(\frac{3^{101}-1}{2}\)
Thùy An làm sai rùi
a)M=2100-299+298-...+22-2
22M=2102-2101+2100-...+22-2
4M-M=2102-2101+2100-...+22-2-2100+299-...-22+2
3M=2102-2101
M=\(\frac{2^{102}-2^{101}}{3}\)
\(A=1+3+3^2+3^3+...+3^{99}\)
\(\Rightarrow3A=3+3^2+3^3+...+3^{100}\)
\(\Rightarrow3A-A=2A=\left(3+3^2+3^3+...+3^{100}\right)-\left(\text{}\text{}\text{}1+3^2+3^3+...+3^{99}\right)\)
\(\Rightarrow2A=3^{100}-1\Rightarrow A=\frac{3^{100}-1}{2}\)
a: \(3A=3+3^2+...+3^{101}\)
\(\Leftrightarrow2A=3^{101}-1\)
hay \(A=\dfrac{3^{101}-1}{2}\)
b: \(2B=2^{101}-2^{100}+...+2^3-2^2\)
\(\Leftrightarrow3B=2^{101}-2\)
hay \(B=\dfrac{2^{101}-2}{3}\)
c: \(3C=3^{101}-3^{100}+....+3^3-3^2+3\)
=>\(4C=3^{101}+1\)
hay \(C=\dfrac{3^{101}+1}{4}\)