K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 4 2017

Làm như vậy nè :

=X-1/X-2 : (X-2/X-3 x X-1/X-3)

=X-1/X-2 : (X-2)x(X-1)/(X-3)2 

=X-1/X-2 x (X-3)2 /(X-2) x(X-1)

=(x-3)2/(X-2)2

DẤU / LÀ DẤU PHẦN NHÉ

25 tháng 4 2020

a) \(\frac{2x^3+x^2+x+6}{x^2-x+2}=\frac{\left(2x+3\right)\left(x^2-x+2\right)}{x^2-x+2}=2x+3\)

b) \(\frac{x}{x-3}-\frac{5x^2+27}{x^2-9}+\frac{x-9}{x+3}\)

\(=\frac{x}{x-3}-\frac{5x^2+27}{\left(x-3\right)\left(x+3\right)}+\frac{x-9}{x+3}\)

\(=\frac{x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\frac{5x^2+27}{\left(x-3\right)\left(x+3\right)}+\frac{\left(x-9\right)\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}\)

\(=\frac{x^2+3x}{\left(x-3\right)\left(x+3\right)}-\frac{5x^2+27}{\left(x-3\right)\left(x+3\right)}+\frac{x^2-12x+27}{\left(x-3\right)\left(x+3\right)}\)

\(=\frac{x^2+3x-\left(5x^2+27\right)+x^3-12x+27}{\left(x-3\right)\left(x+3\right)}\)

\(=\frac{-3x^2-9x}{\left(x-3\right)\left(x+3\right)}\)

\(=\frac{-3x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}\)

\(=\frac{-3x}{x-3}\)

2 tháng 8 2016

Bài 1: (x-7)(x-8)-(x-5)(x-2)

=x^2 - 15x +56 -( x^2 -7x +10)

=46-8x.Thay x=-1/5 vào bt ta có:

A=46-8*(-1)/5=47,6

Bài 2:(x - 3)^2 - 2(x - 3)(x + 2)+ (x+2)^2

=(x - 3)[x - 3 - 2(x+2)] +(x+2)^2

=(x-3)[-x-7] + x^2+4x+4

=-x^2 -4x +21 +x^2+4x+4

=25

Bài 3:

a)2x^2 - 6x=0

<=>2x(x-3)=0

<=>2x=0 hoặc x-3=0

<=>x=0 hoặc x=3

b)x^2-6x+9=0 <-- chắc đề thế này

<=>(x-3)^2=0 dùng HĐT

<=>x-3=0 =>x=3

2 tháng 8 2016

Ôi! Mình cám ơn nhé <3
 

6 tháng 10 2021

a) \(2x\left(x+5\right)-2x^2=2x^2+10x-2x^2=10x\)

b) \(\left(x+3\right)^2+\left(x-1\right)\left(3+2x\right)=x^2+6x+9+3x+2x^2-3-2x\)

\(=3x^2+7x+6\)

a: \(2x\left(x+5\right)-2x^2=2x^2+10x-2x^2=10x\)

b: \(\left(x+3\right)^2+\left(2x+3\right)\left(x-1\right)\)

\(=x^2+6x+9+2x^2-2x+3x-3\)

\(=3x^2+7x+6\)

18 tháng 12 2021

a: \(=\dfrac{x^3}{\left(x-2\right)\left(x+2\right)}-\dfrac{x}{x-2}-\dfrac{2}{x+2}\)

\(=\dfrac{x^3-x^2-2x-2x+4}{\left(x-2\right)\left(x+2\right)}\)

\(=\dfrac{x^3-x^2-4x+4}{\left(x-2\right)\left(x+2\right)}=\dfrac{\left(x-2\right)\left(x+2\right)\left(x-1\right)}{\left(x-2\right)\left(x+2\right)}=x-1\)

Bài 2:

1: \(A=\left(x+2\right)\left(x^2-2x+4\right)+2\left(x+1\right)\left(1-x\right)\)

\(=\left(x+2\right)\left(x^2-x\cdot2+2^2\right)-2\left(x+1\right)\left(x-1\right)\)

\(=x^3+2^3-2\left(x^2-1\right)\)

\(=x^3+8-2x^2+2=x^3-2x^2+10\)

\(B=\left(2x-y\right)^2-2\left(4x^2-y^2\right)+\left(2x+y\right)^2+4\left(y+2\right)\)

\(=\left(2x-y\right)^2-2\cdot\left(2x-y\right)\left(2x+y\right)+\left(2x+y\right)^2+4\left(y+2\right)\)

\(=\left(2x-y-2x-y\right)^2+4\left(y+2\right)\)

\(=\left(-2y\right)^2+4\left(y+2\right)\)

\(=4y^2+4y+8\)

2: Khi x=2 thì \(A=2^3-2\cdot2^2+10=8-8+10=10\)

3: \(B=4y^2+4y+8\)

\(=4y^2+4y+1+7\)

\(=\left(2y+1\right)^2+7>=7>0\forall y\)

=>B luôn dương với mọi y

Bài 1:

5: \(x^2\left(x-y+1\right)+\left(x^2-1\right)\left(x+y\right)\)

\(=x^3-x^2y+x^2+x^3+x^2y-x-y\)

\(=2x^3-x+x^2-y\)

6: \(\left(3x-5\right)\left(2x+11\right)-6\left(x+7\right)^2\)

\(=6x^2+33x-10x-55-6\left(x^2+14x+49\right)\)

\(=6x^2+23x-55-6x^2-84x-294\)

=-61x-349