Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 3y(x2-xy)-7x2(y+xy)
= 6xy - 3xy2 - 14xy - 14x2y
=-8xy-3xy2-14x2y
Bậc: 2
\(A=5xy^2+xy-xy^2-\frac{1}{3}x^2y+2xy+x^2y+xy+6\)
\(A=\left(5xy^2-xy^2\right)+\left(xy+2xy+xy\right)+\left(-\frac{1}{3}x^2y+x^2y\right)+6\)
\(A=4xy^2+4xy+\frac{2}{3}x^2y+6\)
b) để A+B=0 => B là số đối của A
\(\Rightarrow B=-4xy^2-4xy-\frac{2}{3}x^2y-6\)
c) Ta có \(A+C=-2xy+1\Leftrightarrow4xy^2+4xy+\frac{2}{3}x^2y+6+C=-2xy+1\)
\(\Leftrightarrow C=-2xy+1-4xy^2-4xy-\frac{2}{3}x^2y-6\)
\(\Leftrightarrow C=\left(-2xy-4xy\right)+\left(1-6\right)-4xy^2-\frac{2}{3}x^2y\)
\(\Leftrightarrow C=-6xy-5-4xy^2-\frac{2}{3}x^2y\)
C= 5xy – 3,5y2 - 2 xy + 1,3 xy + 3x -2y
=(5xy-2xy+1,3xy)-3,5y2 +3x-2y
=4,3xy-3,5y2 +3x-2y
bậc của đa thức C là 2
Q – (5x2 – xyz) = xy + 2x2 – 3xyz + 5
⇒ Q = (xy + 2x2 – 3xyz + 5) + (5x2 – xyz)
= xy + 2x2 – 3xyz + 5 + 5x2 – xyz
= (2x2+ 5x2) + (- 3xyz – xyz) + xy + 5
= 7x2 – 4xyz + xy + 5.
2,
M + N = 3xyz - 3x2 + 5xy - 1 + 5x2 + xyz - 5xy + 3 - y
= -3x2 + 5x2 + 3xyz + xyz + 5xy - 5xy - y - 1 + 3
= 2x2 + 4xyz - y +2.
M - N = (3xyz - 3x2 + 5xy - 1) - (5x2 + xyz - 5xy + 3 - y)
= 3xyz - 3x2 + 5xy - 1 - 5x2 - xyz + 5xy - 3 + y
= -3x2 - 5x2 + 3xyz - xyz + 5xy + 5xy + y - 1 - 3
= -8x2 + 2xyz + 10xy + y - 4.
N - M = (5x2 + xyz - 5xy + 3 - y) - (3xyz - 3x2 + 5xy - 1)
= 5x2 + xyz - 5xy + 3 - y - 3xyz + 3x2 - 5xy + 1
= 5x2 + 3x2 + xyz - 3xyz - 5xy - 5xy - y + 3 + 1
= 8x2 - 2xyz - 10xy - y + 4.
3,
a) P + (x2 – 2y2) = x2 – y2 + 3y2 – 1
P = (x2 – y2 + 3y2 – 1) - (x2 – 2y2)
P = x2 – y2 + 3y2 – 1 - x2 + 2y2
P = x2 – x2 – y2 + 3y2 + 2y2 – 1
P = 4y2 – 1.
Vậy P = 4y2 – 1.
b) Q – (5x2 – xyz) = xy + 2x2 – 3xyz + 5
Q = (xy + 2x2 – 3xyz + 5) + (5x2 – xyz)
Q = xy + 2x2 – 3xyz + 5 + 5x2 – xyz
Q = 7x2 – 4xyz + xy + 5
Vậy Q = 7x2 – 4xyz + xy + 5.
4,
a, Thu gọn : x2+2xy-3x3+2y3+3x3-y3
= x2+2xy+(-3x3+3x3)+2y3-y3
=x2+2xy+2y3-y3
Thay x=5,y=4 vào đa thức x2+2xy+2y3-y3 Ta có:
52 + 2.5.4 + 43 = 25 + 40 + 64 = 129.
Vậy giá trị của đa thức x2+2xy+2y3-y3 tại x=5,y=4 là 129
b,
Thay x = -1; y = -1 vào biểu thức xy-x2y2+x4y4-x6y6+x8y8 Ta Có
M = (-1)(-1) - (-1)2.(-1)2 + (-1)4. (-1)4-(-1)6.(-1)6 + (-1)8.(-1)8
= 1 -1 + 1 - 1+ 1 = 1.
Vậy giá trị của biểu thức xy-x2y2+x4y4-x6y6+x8y8 tại x=-1, y=-1 là 1
5,
a, C=A+B
C = x2 – 2y + xy + 1 + x2 + y - x2y2 - 1
C = 2x2 – y + xy - x2y2
b) C + A = B => C = B - A
C = (x2 + y - x2y2 - 1) - (x2 – 2y + xy + 1)
C = x2 + y - x2y2 - 1 - x2 + 2y - xy - 1
C = - x2y2 - xy + 3y - 2.
a) 2x2yz + 4xy2z - 5x2yz + xy2z - xyz
= (2x2yz-5x2yz)+(4xy2z+xy2z)-xyz
= -3x2yz + 5xy2z - xyz
b) x3-5xy+3x3+xy-x2+\(\dfrac{1}{2}\)xy-x2
= (x3+3x3)+(xy-5xy+\(\dfrac{1}{2}\)xy)-(x2+x2)
= 4x3-\(\dfrac{7}{2}\)xy-2x2
a. A = \(5xy^2+xy-xy-\dfrac{1}{3}x^2y+2xy+x^2y+xy+6\)
=> A = \(5xy^2-\dfrac{1}{3}x^2y+x^2y+xy-xy+xy+2xy+6\)
=> A = \(5xy^2-\dfrac{2}{3}x^2y+3xy+6\)
=> Bậc của đa thức A là : 3
\(Q=xyz+\frac{1}{5}xy^2-3xyz+xy^5-xy^2-12=\left(xyz-3xyz\right)+\left(\frac{1}{5}xy^2-xy^2\right)+xy^5-12\)
\(=-2xyz-\frac{4}{5}xy^2+xy^5-12=xy^5-2xyz-\frac{4}{5}xy^2-12\)
vậy bậc của đa thức Q là 6
\(Q=xyz+\frac{1}{5}xy^2-3xyz+xy^5-xy^2-12\)
\(Q=\left(xyz-3xyz\right)+\left(\frac{1}{5}xy^2-xy^2\right)+xy^5-12\)
\(Q=-2xyz+\frac{-4}{5}xy^2+xy^5-12\)
\(\text{Bậc là:6}\)