Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)p+(x2 -2y2)=x2 -y2 +3y2 -1
\(\Rightarrow\)p=(x2 -2y2 +3y2 -1)-(x-2y).(x+2y)
\(\Rightarrow\)p=(x2-2y2 +3y2 -1)-(x2 +2xy-2xy)
\(\Rightarrow\)p=x2 -2y2+3y2 -1-x2 -2xy+2xy
\(\Rightarrow\) p=2y2-1
Vậy P=2y2-1
b)Q-(5x2-xyz)=xy+2x2-3xyz+5
\(\Rightarrow\)Q=(xy+2x2-3xyz+5)+(5x2-xyz)
\(\Rightarrow\)Q=7x2-4xyz+xy+5
Vậy Q=7x2-4xyz+xy+5
a) P + (x2 - 2y2) = x2 - y2 + 3y2 - 1
⇔ P = (x2 - y2 + 3y2 - 1) - (x2 - 2y2)
⇔ P = x2 + 2y2 - 1 - x2 + 2y2
⇔ P = 4y2 - 1
b) Q - (5x2 - xyz) = xy + 2x2 - 3xyz + 5
⇔ Q = (xy + 2x2 - 3xyz + 5) + (5x2 - xyz)
⇔ Q = xy + 2x2 - 3xyz + 5 + 5x2 - xyz
⇔ Q = xy + 7x2 - 4xyz + 5
a) P + (x2 – 2y2) = x2 – y2 + 3y2 – 1
P = (x2 – y2 + 3y2 – 1) - (x2 – 2y2)
P = x2 – y2 + 3y2 – 1 - x2 + 2y2
P = x2 – x2 – y2 + 3y2 + 2y2 – 1
P = 4y2 – 1.
Vậy P = 4y2 – 1.
b) Q – (5x2 – xyz) = xy + 2x2 – 3xyz + 5
Q = (xy + 2x2 – 3xyz + 5) + (5x2 – xyz)
Q = xy + 2x2 – 3xyz + 5 + 5x2 – xyz
Q = 7x2 – 4xyz + xy + 5
Vậy Q = 7x2 – 4xyz + xy + 5.
bài này làm như sau: độc khư xem na mai , khươn khươn heo mi nai
Ta có:
M = 3xyz - 3x2 + 5xy - 1
N = 5x2 + xyz - 5xy + 3 - y
M + N = 3xyz - 3x2 + 5xy - 1 + 5x2 + xyz - 5xy + 3 - y
= -3x2 + 5x2 + 3xyz + xyz + 5xy - 5xy - y - 1 + 3
= 2x2 + 4xyz - y +2.
M - N = (3xyz - 3x2 + 5xy - 1) - (5x2 + xyz - 5xy + 3 - y)
= 3xyz - 3x2 + 5xy - 1 - 5x2 - xyz + 5xy - 3 + y
= -3x2 - 5x2 + 3xyz - xyz + 5xy + 5xy + y - 1 - 3
= -8x2 + 2xyz + 10xy + y - 4.
N - M = (5x2 + xyz - 5xy + 3 - y) - (3xyz - 3x2 + 5xy - 1)
= 5x2 + xyz - 5xy + 3 - y - 3xyz + 3x2 - 5xy + 1
= 5x2 + 3x2 + xyz - 3xyz - 5xy - 5xy - y + 3 + 1
= 8x2 - 2xyz - 10xy - y + 4.
M = 3xyz - 3x2 + 5xy - 1
N = 5x2 + xyz - 5xy + 3 - y
M + N = 3xyz - 3x2 + 5xy - 1 + 5x2 + xyz - 5xy + 3 - y
= -3x2 + 5x2 + 3xyz + xyz + 5xy - 5xy - y - 1 + 3
= 2x2 + 4xyz - y +2.
M - N = (3xyz - 3x2 + 5xy - 1) - (5x2 + xyz - 5xy + 3 - y)
= 3xyz - 3x2 + 5xy - 1 - 5x2 - xyz + 5xy - 3 + y
= -3x2 - 5x2 + 3xyz - xyz + 5xy + 5xy + y - 1 - 3
= -8x2 + 2xyz + 10xy + y - 4.
N - M = (5x2 + xyz - 5xy + 3 - y) - (3xyz - 3x2 + 5xy - 1)
= 5x2 + xyz - 5xy + 3 - y - 3xyz + 3x2 - 5xy + 1
= 5x2 + 3x2 + xyz - 3xyz - 5xy - 5xy - y + 3 + 1
= 8x2 - 2xyz - 10xy - y + 4.
a) 2x2yz + 4xy2z - 5x2yz + xy2z - xyz
= (2x2yz-5x2yz)+(4xy2z+xy2z)-xyz
= -3x2yz + 5xy2z - xyz
b) x3-5xy+3x3+xy-x2+\(\dfrac{1}{2}\)xy-x2
= (x3+3x3)+(xy-5xy+\(\dfrac{1}{2}\)xy)-(x2+x2)
= 4x3-\(\dfrac{7}{2}\)xy-2x2
a)Vì T(x)=P(x)+Q(x)
=>T(x)=(-2x2-5x+1)+(-2x2+x-5)
=>T(x)=-2x2-5x+1-2x2+x-5
=>T(x)=(-2x2-2x2)+(-5x+x)+(1-5)=-4x2-4x-4
b)Xét T(x)=-4x2-4x-4=0
=>-(4x2+4x+4)=0
=>4x2+4x+4=0
=>4x2+2x+2x+1+3=0
=>2x(2x+1)+(2x+1)+3=0
=>(2x+1)(2x+1)+3=0
=>(2x+1)2+3=0
Vì (2x+1)2 > 0 với mọi x
=>(2x+1)2+3 > 3 > 0 với mọi x
=>T(x) vô nghiệm
\(3xyz^2+\left(-\frac{4}{8}\right)xyz^5\cdot\frac{1}{3}xyz\)
\(=3xyz^2-\frac{1}{2}xyz\cdot\frac{1}{3}xyz\)
\(=3xyz-\frac{1}{6}x^2y^2z^2\)
\(xyz\left(3-\frac{1}{6}xyz\right)\)
b) \(3xyz^5\cdot\left(-\frac{1}{7}\right)xyz\cdot\frac{-1}{8}xyz^4\)
\(=\left[3\cdot\left(-\frac{1}{7}\right)\cdot\left(-\frac{1}{8}\right)\right]\left(x\cdot x\cdot x\right)\left(y\cdot y\cdot y\right)\left(z^5\cdot z\cdot z^4\right)\)
\(=\frac{3}{56}x^3y^3z^{10}\)
a, \(3xyz^2+\left(\frac{-4}{8}xyz^5\right)\cdot\frac{1}{3}xyz=3xyz^2+\left[\left(\frac{-4}{8}\right)\cdot\frac{1}{3}\right]xyz^5xyz\)\(=3xyz^2-\frac{1}{2}x^2y^2z^6\)
b, \(3xyz^5\cdot\left(\frac{-1}{7}xyz^2\right)\cdot\frac{-1}{8}xyz^4=\left[3\cdot\left(\frac{-1}{7}\right)\cdot\left(\frac{-1}{8}\right)\right]xyz^5xyz^2xyz^4=\frac{3}{56}x^3y^3z^{11}\)
\(M+N=3x^2-5y^3+2x^2+y^3-1\)
\(=\left(3x^2+2x^2\right)+\left(-5y^3+y^3\right)-1\)
\(=5x^3-4y^3-1\)
\(M-N=3x^2-5y^3-2x^2-y^3+1\)
\(=\left(3x^2-2x^2\right)+\left(-5y^3-y^3\right)+1\)
\(=x^2-6y^3+1\)
Q – (5x2 – xyz) = xy + 2x2 – 3xyz + 5
⇒ Q = (xy + 2x2 – 3xyz + 5) + (5x2 – xyz)
= xy + 2x2 – 3xyz + 5 + 5x2 – xyz
= (2x2+ 5x2) + (- 3xyz – xyz) + xy + 5
= 7x2 – 4xyz + xy + 5.