K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 7 2016

Bài 3: 

\(f\left(x\right)=9x^3-\frac{1}{3}x+3x^2-3x+\frac{1}{3}x^2-\frac{1}{9}x^3-3x^2-9x+27+3x\) 

\(f\left(x\right)=\left(9x^3-\frac{1}{9}x^3\right)-\left(\frac{1}{3}x+3x+9x-3x\right)+\left(3x^2-3x^2\right)+27\) 

\(f\left(x\right)=\frac{80}{9}x^3-\frac{28}{3}x+27\) 

Thay x = 3 vào đa thức, ta có:

\(f\left(3\right)=\frac{80}{9}.3^3-\frac{28}{3}.3+27\) 

\(f\left(3\right)=240-28+27=239\)

Vậy đa thức trên bằng 239 tại x = 3

Thay x = -3 vào đa thức. ta có:

\(f\left(-3\right)=\frac{80}{9}.\left(-3\right)^3-\frac{28}{3}.\left(-3\right)+27\)

\(f\left(-3\right)=-240+28+27=-185\)

31 tháng 7 2016

Bài 4: \(f\left(x\right)=2x^6+3x^2+5x^3-2x^2+4x^4-x^3+1-4x^3-x^4\)

\(f\left(x\right)=2x^6+\left(3x^2-2x^2\right)+\left(5x^3-x^3-4x^3\right)+\left(4x^4-x^4\right)\)

\(f\left(x\right)=2x^6+x^2+3x^4\)

Thay x=1 vào đa thức, ta có:

\(f\left(1\right)=2.1^6+1^2+3.1^4=2+1+3=6\)

Đa thức trên bằng 6 tại x =1

Thay x = - 1 vào đa thức, ta có:

\(f\left(-1\right)=2.\left(-1\right)^6+\left(-1\right)^2+3.\left(-1\right)^4=2+1+3=6\)

Đa thức trên có nghiệm = 0

30 tháng 5 2019

a) \(P\left(x\right)=3x^2-5x^3+x+2x^3-x-4+3x^3+x^4+7\)

\(\Rightarrow P\left(x\right)=3x^2+\left(3x^3+2x^3-5x^3\right)+\left(x-x\right)+\left(7-4\right)\)

\(\Rightarrow P\left(x\right)=3x^2+0+0+3\)

\(\Rightarrow P\left(x\right)=3x^2+3\)

b) Vì \(3x^2\ge0\) nên \(P\left(x\right)=3x^2+3\ge3\)

Vậy đa thức P(x) vô nghiệm

30 tháng 5 2019

Mình quên x4  nên P(x) = 3x2 + x4 + 3

Lý luận tương tự \(P\left(x\right)\ge3\) nên P(x) vô nghiệm

30 tháng 5 2019

a) Thu gọn:

P(x)= 3x2 - 5x3 + x + 2x3 - x - 4 + 3x3 + x4 + 7

P(x)= (-5x3 + 2x3 + 3x3) + (x - x) + (-4 + 7) + 3x2 + x4

P(x)= 3 + 3x2 + x4.

b) P(x)= 3 + 3x2 + x4

Vì:

+) x2 > hoặc =0 ∀ x ∈ R

+) x4 > hoặc =0 ∀ x ∈ R

=> P(x)= 3 + 3x2 + x4 > 0 ∀ x ∈ R.

Vậy P(x) không có nghiệm.

Lần sau nếu bạn viết đa thức thì bạn viết cách ra một chút nhé, chứ không thì khó nhìn lắm.

Chúc bạn học tốt!

30 tháng 5 2019

^ đây là dấu nhân hả bạn

29 tháng 6 2020

a) P(x) = 5x3 - 3x + 7 - x = 5x3 + (-3x - x) + 7 = 5x3 - 4x + 7

Q(x) = -5x3 + 2x - 3 + 2x - x2 - 2 = -5x3 + (2x + 2x) + (-3 - 2) - x2 = -5x3 + 4x - 5 -x2

b) M(x) = P(x) + Q(x)

* Tính P(x) + Q(x)

P(x)             = 5x3           - 4x + 7

Q(x)           = -5x3 - x2    + 4x - 5

P(x) + Q(x) =        -x2            - 2

=> M(x) = -x2 - 2

N(x) = P(x) - Q(x)

Tính P(x)  - Q(x) 

P(x)          =   5x3           - 4x + 7

Q(x)          = -5x3 - x2   + 4x  - 5

-------------------------------------------

P(x) - Q(x) = 10x3 + x2- 8x + 12

c) Để M(x) có nghiệm => -x2 + 2 = 0

Vì \(x^2\ge0\forall x\inℝ\Leftrightarrow-x^2< 0\forall\inℝ\)

=> \(-x^2+2< 2< 0\)

=> \(-x^2+2< 0\forall x\inℝ\)

Vậy không có nghiệm đa thức M(x)

* Phần câu c k chắc nx 

P/S : Sửa lại cái đề nhé

10 tháng 5 2020

Bài làm:

Ta có: 

\(f\left(x\right)=x^3-3x^2+2x-5+x^2\)

\(f\left(x\right)=x^3-2x^2+2x-5\)

Và:

\(g\left(x\right)=-x^3-5x+3x^2+3x+4\)

\(g\left(x\right)=-x^3+3x^2-2x+4\)

Chúc bạn học tốt!

7 tháng 7 2020

trình bày các bước ra luôn được ko ạ

23 tháng 4 2021

f(x)=2x^2-3x+3+8x

     =2x^2+8x-3x+3

     =2x^2+5x-3

g(x)=5x^2+5x+x^4-2-3x

      =x^4+5x^2+5x-3x-2

      =x^4+5x^2+2x-2

7 tháng 4 2016

a) P(x)=3x- 5x+x + 2x- x - 4 + 3x+ x+ 7

= 3x2 - 5x3 + 2x3 + 3x3 + x - x + x4 - 4 + 7

= 3x2 + 0 + 0 + x4 + 3

= 3x2 + x4 + 3

b) Vì x2 > hoặc = 0 vs mọi x thuộc R

=))  3x  > hoặc = 3 vs mọi x thuộc R

=)) 3x2 + x4 + 3  > hoặc = x4 + 6 vs mọi x thuộc R

=)) 3x2 + x4 + 3  > 0

Vậy đa thức 3x2 + x4 + 3  vô nghiệm 

2 thieu đề

8 tháng 4 2016

Bạn Phan Cả Phát làm sai rồi, vì 3x2 có 2 trường hợp: 3x> 0 hoặc 3x= 0  vì xcó thể = 0 được. VÌ vậy nếu bạn bảo 3x>/= 3 là sai

23 tháng 4 2019

cho mình ghi lại là

b) Tính A(x) +B(x),A(x)-B(x)

`@` `\text {Ans}`

`\downarrow`

`a)`

`P(x) =`\(3x^2+7+2x^4-3x^2-4-5x+2x^3\)

`= (3x^2 - 3x^2) + 2x^4 + 2x^3 - 5x + (7-4)`

`= 2x^4 + 2x^3 - 5x + 3`

`Q(x) =`\(3x^3+2x^2-x^4+x+x^3+4x-2+5x^4\)

`= (5x^4 - x^4) + (3x^3 + x^3) + 2x^2 + (x + 4x)- 2`

`= 4x^4 + 4x^3 + 2x^2 + 5x - 2`

`b)`

`P(-1) = 2*(-1)^4 + 2*(-1)^3 - 5*(-1) + 3`

`= 2*1 + 2*(-1) + 5 + 3`

`= 2 - 2 + 5 + 3`

`= 8`

___

`Q(0) = 4*0^4 + 4*0^3 + 2*0^2 + 5*0 - 2`

`= 4*0 + 4*0 + 2*0 + 5*0 - 2`

`= -2`

`c)`

`G(x) = P(x) + Q(x)`

`=> G(x) = 2x^4 + 2x^3 - 5x + 3 + 4x^4 + 4x^3 + 2x^2 + 5x - 2`

`= (2x^4 + 4x^4) + (2x^3 + 4x^3) + 2x^2 + (-5x + 5x) + (3 - 2)`

`= 6x^4 + 6x^3 + 2x^2 + 1`

`d)`

`G(x) = 6x^4 + 6x^3 + 2x^2 + 1`

Vì `x^4 \ge 0 AA x`

    `x^2 \ge 0 AA x`

`=> 6x^4 + 2x^2 \ge 0 AA x`

`=> 6x^4 + 6x^3 + 2x^2 + 1 \ge 0`

`=> G(x)` luôn dương `AA` `x`

Bài cuối mình không chắc c ạ ;-;