K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 5 2019

a) \(P\left(x\right)=3x^2-5x^3+x+2x^3-x-4+3x^3+x^4+7\)

\(\Rightarrow P\left(x\right)=3x^2+\left(3x^3+2x^3-5x^3\right)+\left(x-x\right)+\left(7-4\right)\)

\(\Rightarrow P\left(x\right)=3x^2+0+0+3\)

\(\Rightarrow P\left(x\right)=3x^2+3\)

b) Vì \(3x^2\ge0\) nên \(P\left(x\right)=3x^2+3\ge3\)

Vậy đa thức P(x) vô nghiệm

30 tháng 5 2019

Mình quên x4  nên P(x) = 3x2 + x4 + 3

Lý luận tương tự \(P\left(x\right)\ge3\) nên P(x) vô nghiệm

30 tháng 5 2019

a) Thu gọn:

P(x)= 3x2 - 5x3 + x + 2x3 - x - 4 + 3x3 + x4 + 7

P(x)= (-5x3 + 2x3 + 3x3) + (x - x) + (-4 + 7) + 3x2 + x4

P(x)= 3 + 3x2 + x4.

b) P(x)= 3 + 3x2 + x4

Vì:

+) x2 > hoặc =0 ∀ x ∈ R

+) x4 > hoặc =0 ∀ x ∈ R

=> P(x)= 3 + 3x2 + x4 > 0 ∀ x ∈ R.

Vậy P(x) không có nghiệm.

Lần sau nếu bạn viết đa thức thì bạn viết cách ra một chút nhé, chứ không thì khó nhìn lắm.

Chúc bạn học tốt!

30 tháng 5 2019

^ đây là dấu nhân hả bạn

31 tháng 7 2016

Bài 3: 

\(f\left(x\right)=9x^3-\frac{1}{3}x+3x^2-3x+\frac{1}{3}x^2-\frac{1}{9}x^3-3x^2-9x+27+3x\) 

\(f\left(x\right)=\left(9x^3-\frac{1}{9}x^3\right)-\left(\frac{1}{3}x+3x+9x-3x\right)+\left(3x^2-3x^2\right)+27\) 

\(f\left(x\right)=\frac{80}{9}x^3-\frac{28}{3}x+27\) 

Thay x = 3 vào đa thức, ta có:

\(f\left(3\right)=\frac{80}{9}.3^3-\frac{28}{3}.3+27\) 

\(f\left(3\right)=240-28+27=239\)

Vậy đa thức trên bằng 239 tại x = 3

Thay x = -3 vào đa thức. ta có:

\(f\left(-3\right)=\frac{80}{9}.\left(-3\right)^3-\frac{28}{3}.\left(-3\right)+27\)

\(f\left(-3\right)=-240+28+27=-185\)

31 tháng 7 2016

Bài 4: \(f\left(x\right)=2x^6+3x^2+5x^3-2x^2+4x^4-x^3+1-4x^3-x^4\)

\(f\left(x\right)=2x^6+\left(3x^2-2x^2\right)+\left(5x^3-x^3-4x^3\right)+\left(4x^4-x^4\right)\)

\(f\left(x\right)=2x^6+x^2+3x^4\)

Thay x=1 vào đa thức, ta có:

\(f\left(1\right)=2.1^6+1^2+3.1^4=2+1+3=6\)

Đa thức trên bằng 6 tại x =1

Thay x = - 1 vào đa thức, ta có:

\(f\left(-1\right)=2.\left(-1\right)^6+\left(-1\right)^2+3.\left(-1\right)^4=2+1+3=6\)

Đa thức trên có nghiệm = 0

7 tháng 4 2016

a) P(x)=3x- 5x+x + 2x- x - 4 + 3x+ x+ 7

= 3x2 - 5x3 + 2x3 + 3x3 + x - x + x4 - 4 + 7

= 3x2 + 0 + 0 + x4 + 3

= 3x2 + x4 + 3

b) Vì x2 > hoặc = 0 vs mọi x thuộc R

=))  3x  > hoặc = 3 vs mọi x thuộc R

=)) 3x2 + x4 + 3  > hoặc = x4 + 6 vs mọi x thuộc R

=)) 3x2 + x4 + 3  > 0

Vậy đa thức 3x2 + x4 + 3  vô nghiệm 

2 thieu đề

8 tháng 4 2016

Bạn Phan Cả Phát làm sai rồi, vì 3x2 có 2 trường hợp: 3x> 0 hoặc 3x= 0  vì xcó thể = 0 được. VÌ vậy nếu bạn bảo 3x>/= 3 là sai

29 tháng 6 2020

a) P(x) = 5x3 - 3x + 7 - x = 5x3 + (-3x - x) + 7 = 5x3 - 4x + 7

Q(x) = -5x3 + 2x - 3 + 2x - x2 - 2 = -5x3 + (2x + 2x) + (-3 - 2) - x2 = -5x3 + 4x - 5 -x2

b) M(x) = P(x) + Q(x)

* Tính P(x) + Q(x)

P(x)             = 5x3           - 4x + 7

Q(x)           = -5x3 - x2    + 4x - 5

P(x) + Q(x) =        -x2            - 2

=> M(x) = -x2 - 2

N(x) = P(x) - Q(x)

Tính P(x)  - Q(x) 

P(x)          =   5x3           - 4x + 7

Q(x)          = -5x3 - x2   + 4x  - 5

-------------------------------------------

P(x) - Q(x) = 10x3 + x2- 8x + 12

c) Để M(x) có nghiệm => -x2 + 2 = 0

Vì \(x^2\ge0\forall x\inℝ\Leftrightarrow-x^2< 0\forall\inℝ\)

=> \(-x^2+2< 2< 0\)

=> \(-x^2+2< 0\forall x\inℝ\)

Vậy không có nghiệm đa thức M(x)

* Phần câu c k chắc nx 

P/S : Sửa lại cái đề nhé

23 tháng 4 2019

Q(x)=-5x3 +4x-x2-5

b.x-2

c.x=-2

23 tháng 4 2019

a. ta có : \(P\left(x\right)=5x^3+x^2-3x+7\)

\(Q\left(x\right)=-5x^3-x^2+4x-5\)

b. ta có \(M\left(x\right)=P\left(x\right)+Q\left(x\right)=5x^3+x^2-3x+7-5x^3-x^2+4x-5\)

\(=x+2\)

c. cho M(x)=0 \(\Leftrightarrow x+2=0\)

\(\Leftrightarrow x=-2\)

vậy x=-2 là nghiệm của đa thức M(x)

tick mk với

a: \(P\left(x\right)=3x^5-4x^4-2x^3+4x^2+5x+6\)

\(Q\left(x\right)=-x^5+2x^4-2x^3+3x^2-x+\dfrac{1}{4}\)

b: \(P\left(x\right)+Q\left(x\right)=2x^5-2x^4-4x^3+7x^2+4x+\dfrac{25}{4}\)

c: \(P\left(-1\right)=-3-4+2+4-5+6=0\)

Do đó: x=-1 là nghiệm của P(x)

\(Q\left(-1\right)=-\left(-1\right)+2-2\cdot\left(-1\right)+3-\left(-1\right)+\dfrac{1}{4}\)

\(=1+2+2+3+1+\dfrac{1}{4}=9.25>0\)

Do đó: x=-1 không là nghiệm của P(x)

20 tháng 8 2015

1000 tăng 21 tức là tỉ lệ tăng là: 21:1000=2,1% 
1 năm sau tăng: 4000x2,1%= 82 người 
Số dân sau 1 năm: 4000+82=4082 người 
b/ Tương tự tỉ lệ tăng: 15:1000=1,5% 
Số dân sau 1 năm: 4000x1,5%+4000=4060 người

18 tháng 4 2016

P(x)=3x^3+x^2+5x+8.Bậc 3,Hệ số cao nhất 5, hệ số tự do 8

Q(x)=3x^3-x^2-5.Bậc 3, Hệ số cao nhất 3,hệ số tự do 5

ý b cộng và trừ 2 đa thưc trên sau đó tìm nghiệm

Xét M(x)=0 suy ra...........

N(x)=5x+3

Vì 5x>_ 0hoac <_0; 3>0 suy ra 5x +3>0 suy ra N(x) k có nghiệm

27 tháng 7 2019

\(\text{a)}P\left(x\right)=2x^2+2x-6x^2+4x^3+2-x^3\)

\(P\left(x\right)=3x^3-4x^2+2x+2\)

\(Q\left(x\right)=3-2x^4+3x+2x^4+3x^3-x\)

\(Q\left(x\right)=3x^3+2x+3\)

\(\text{b)}C\left(x\right)=P\left(x\right)+Q\left(x\right)\)

                 \(P\left(x\right)=3x^3-4x^2+2x+2\)

                 \(Q\left(x\right)=3x^3\)                \(2x+3\)

                                                                                

\(P\left(x\right)+Q\left(x\right)=6x^3-4x^2+4x+5\)

             \(\Rightarrow C\left(x\right)=6x^3-4x^2+4x+5\)

\(\text{c)}D\left(x\right)=Q\left(x\right)-P\left(x\right)\)

                 \(Q\left(x\right)=3x^3\)                \(2x+3\)

                  \(P\left(x\right)=3x^3-4x^2+2x+2\)

                                                                                    

\(Q\left(x\right)-P\left(x\right)=\)       \(4x^2\)             \(+1\)

             \(\Rightarrow D\left(x\right)=4x^2+1\)

Để \(D\left(x\right)\)có nghiệm thì:

         \(D\left(x\right)=0\)

\(\Rightarrow4x^2+1=0\)

Mà \(4x^2\ge0\)

\(\Rightarrow4x^2+1\ge1\)

\(\Rightarrow D\left(x\right)\ge1\)

\(\Rightarrow D\left(x\right)>0\)

Vậy đa thức \(D\left(x\right)\)vô nghiệm

24 tháng 6 2020

a, \(P\left(x\right)=5x^3-3x+7-x\)

               \(=5x^3-4x+7\)

\(Q\left(x\right)=-5x^3+2x-3+2x-x^2-2\)

             \(=-5x^3-x^2+4x-5\)

Ta có \(P\left(x\right)+Q\left(x\right)=-x^2+2\)

         \(P\left(x\right)-Q\left(x\right)=10x^3+x^2-8x+12\)

b, \(P\left(x\right)+Q\left(x\right)=0\)

\(\Leftrightarrow-x^2+2=0\)

\(\Leftrightarrow-x^2=-2\)

\(\Leftrightarrow x^2=2=\left(\pm\sqrt{2}\right)^2\)

\(\Rightarrow x=\pm\sqrt{2}\)

Vậy \(x=\pm\sqrt{2}\)

24 tháng 6 2020

P(x) = 5x3 - 3x + 7 - x

        = 5x3 - 4x + 7

Q(x) = -5x3 + 2x - 3 + 2x - x2 - 2

        = -5x3 - x2 + 4x - 5

P(x) + Q(x) = ( 5x3 - 4x + 7 ) + ( -5x3 - x2 + 4x - 5 )

                   = 5x3 - 4x + 7 - 5x3 - x2 + 4x - 5

                   = -x2 + 2

P(x) - Q(x) = ( 5x3 - 4x + 7 ) - ( -5x3 - x2 + 4x - 5 )

                  = 5x3 - 4x + 7 + 5x3 + x2 - 4x + 5

                  = 10x3 + x2 - 8x + 12

Đặt H(x) = P(x) + Q(x)

=> H(x) = -x2 + 2

H(x) = 0 <=> -x2 + 2 = 0

              <=> -x2 = -2

              <=> x2 = 2

              <=> x = \(\pm\sqrt{2}\)

Vậy nghiệm của đa thức là \(\pm\sqrt{2}\)