K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2019

Q(x)=-5x3 +4x-x2-5

b.x-2

c.x=-2

23 tháng 4 2019

a. ta có : \(P\left(x\right)=5x^3+x^2-3x+7\)

\(Q\left(x\right)=-5x^3-x^2+4x-5\)

b. ta có \(M\left(x\right)=P\left(x\right)+Q\left(x\right)=5x^3+x^2-3x+7-5x^3-x^2+4x-5\)

\(=x+2\)

c. cho M(x)=0 \(\Leftrightarrow x+2=0\)

\(\Leftrightarrow x=-2\)

vậy x=-2 là nghiệm của đa thức M(x)

tick mk với

29 tháng 6 2020

a) P(x) = 5x3 - 3x + 7 - x = 5x3 + (-3x - x) + 7 = 5x3 - 4x + 7

Q(x) = -5x3 + 2x - 3 + 2x - x2 - 2 = -5x3 + (2x + 2x) + (-3 - 2) - x2 = -5x3 + 4x - 5 -x2

b) M(x) = P(x) + Q(x)

* Tính P(x) + Q(x)

P(x)             = 5x3           - 4x + 7

Q(x)           = -5x3 - x2    + 4x - 5

P(x) + Q(x) =        -x2            - 2

=> M(x) = -x2 - 2

N(x) = P(x) - Q(x)

Tính P(x)  - Q(x) 

P(x)          =   5x3           - 4x + 7

Q(x)          = -5x3 - x2   + 4x  - 5

-------------------------------------------

P(x) - Q(x) = 10x3 + x2- 8x + 12

c) Để M(x) có nghiệm => -x2 + 2 = 0

Vì \(x^2\ge0\forall x\inℝ\Leftrightarrow-x^2< 0\forall\inℝ\)

=> \(-x^2+2< 2< 0\)

=> \(-x^2+2< 0\forall x\inℝ\)

Vậy không có nghiệm đa thức M(x)

* Phần câu c k chắc nx 

P/S : Sửa lại cái đề nhé

16 tháng 6 2020

\(M=\frac{-2}{7}x^4y\cdot\left(-\frac{21}{10}\right)xy^2z^2=\left(-\frac{2}{7}\cdot-\frac{21}{10}\right)\left(x^4x\right)\left(yy^2\right)z^2=\frac{3}{5}x^5y^3z^2\)

Hệ số 3/5

\(N=-16x^2y^2z^4\cdot\left(-\frac{1}{4}\right)xy^2z=\left(-16\cdot-\frac{1}{4}\right)\left(x^2x\right)\left(y^2y^2\right)\left(z^4z\right)=4x^3y^4z^5\)

Hệ số 4

Làm nốt b Quỳnh đag lm dở.

Ta có \(P\left(x\right)=C\left(x\right)+D\left(x\right)\)

\(P\left(x\right)=2x^4+2x-6x^2-x^3-3+4x^2+x^3-2x^2-2x^4-2x+5x^2+1\)

\(P\left(x\right)=x^2-2\)

Ta có : \(P\left(x\right)=x^2-2=0\)

\(\Leftrightarrow x^2=2\Leftrightarrow x=\pm\sqrt{2}\)

11 tháng 5 2015

a) ta có p(x)=5x3-3x+7-x

                  =5x3-(3x+x)+7

                 =  5x3-4x+7

ta có   q(x)=-5x3+2x-3+2x-x2-2

                =-5x3+(2x+2x)-(3+2)

               =-5x3+4x-5

b) ta có m(x)=5x3-4x+7-5x3+4x-5

                   =(5x3-5x3)-(4x-4x)+(7-5)

                    = 0          -    0     +2=2

n(x)=5x3-4x+7+5x3-4x+5

      =(5x3+5x3)-(4x+4x)+(7+5)

     =10x3-8x+12

c)Để m(x) có nghiệm thì tức là 2=0 =>điều này vô lí, nên m(x)vô nghiệm

   

20 tháng 4 2018

huuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

29 tháng 3 2020

Bài 3 :

1. Thay x = -5 vào f(x) ta được :

\(\left(-5\right)^2-4\left(-5\right)+5=50\)

Vậy x = -5 không là nghiệm của đa thức trên .

Bài 2 :

1. Ta có : \(f_{\left(x\right)}=x\left(1-x\right)+\left(2x^2-x+4\right)\)

=> \(f_{\left(x\right)}=x-x^2+2x^2-x+4\)

=> \(f_{\left(x\right)}=x^2+4\)

=> \(x^2+4=0\)

Vậy đa thức trên vô nghiệm .

2. Ta có \(g_{\left(x\right)}=x\left(x-5\right)-x\left(x+2\right)+7x\)

=> \(g_{\left(x\right)}=x^2-5x-x^2-2x+7x\)

=> \(g_{\left(x\right)}=0\)

Vậy đa thức trên vô số nghiệm .

3. Ta có : \(h_{\left(x\right)}=x\left(x-1\right)+1\)

=> \(h_{\left(x\right)}=x^2-x+1\)

=> \(h_{\left(x\right)}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)

=> \(\left(x-\frac{1}{2}\right)^2=-\frac{3}{4}\)

Vậy đa thức vô nghiệm .

29 tháng 3 2020

Bài 3:

\(f\left(x\right)=x^2+4x-5.\)

+ Thay \(x=-5\) vào đa thức \(f\left(x\right)\) ta được:

\(f\left(x\right)=\left(-5\right)^2+4.\left(-5\right)-5\)

\(\Rightarrow f\left(x\right)=25+\left(-20\right)-5\)

\(\Rightarrow f\left(x\right)=25-20-5\)

\(\Rightarrow f\left(x\right)=5-5\)

\(\Rightarrow f\left(x\right)=0.\)

Vậy \(x=-5\) là nghiệm của đa thức \(f\left(x\right).\)

Chúc bạn học tốt!

Bài 1:

a) \(f\left(x\right)=2x\left(x^2-3\right)-4\left(1-2x\right)+x^2\left(x-1\right)+\left(5x+3\right)\)

\(=2x^3-6x-4+8x+x^3-x^2+5x+3\)

\(=x^3-x^2+7x-1\)

\(g\left(x\right)=-3\left(1-x^2\right)-2\left(x^2-2x+1\right)\)

\(=-3+3x^2-2x^2+4x-2\)

\(=x^2+4x-5\)

b) \(h\left(x\right)=f\left(x\right)-g\left(x\right)\)

\(=x^3-x^2+7x-1-x^2-4x+5\)

\(=x^3-2x^2+3x-4\)

11 tháng 8 2018

Cảm ơn ạ

24 tháng 6 2020

a, \(P\left(x\right)=5x^3-3x+7-x\)

               \(=5x^3-4x+7\)

\(Q\left(x\right)=-5x^3+2x-3+2x-x^2-2\)

             \(=-5x^3-x^2+4x-5\)

Ta có \(P\left(x\right)+Q\left(x\right)=-x^2+2\)

         \(P\left(x\right)-Q\left(x\right)=10x^3+x^2-8x+12\)

b, \(P\left(x\right)+Q\left(x\right)=0\)

\(\Leftrightarrow-x^2+2=0\)

\(\Leftrightarrow-x^2=-2\)

\(\Leftrightarrow x^2=2=\left(\pm\sqrt{2}\right)^2\)

\(\Rightarrow x=\pm\sqrt{2}\)

Vậy \(x=\pm\sqrt{2}\)

24 tháng 6 2020

P(x) = 5x3 - 3x + 7 - x

        = 5x3 - 4x + 7

Q(x) = -5x3 + 2x - 3 + 2x - x2 - 2

        = -5x3 - x2 + 4x - 5

P(x) + Q(x) = ( 5x3 - 4x + 7 ) + ( -5x3 - x2 + 4x - 5 )

                   = 5x3 - 4x + 7 - 5x3 - x2 + 4x - 5

                   = -x2 + 2

P(x) - Q(x) = ( 5x3 - 4x + 7 ) - ( -5x3 - x2 + 4x - 5 )

                  = 5x3 - 4x + 7 + 5x3 + x2 - 4x + 5

                  = 10x3 + x2 - 8x + 12

Đặt H(x) = P(x) + Q(x)

=> H(x) = -x2 + 2

H(x) = 0 <=> -x2 + 2 = 0

              <=> -x2 = -2

              <=> x2 = 2

              <=> x = \(\pm\sqrt{2}\)

Vậy nghiệm của đa thức là \(\pm\sqrt{2}\)

21 tháng 4 2017

a) A(x)= \(-2x^4+x^2-x-7-2\)

B(x)=\(2x^4+6x^3-2x^3-x^2-8x-5\)

b) Thay số:A(x)

\(1^2-1-2-2\cdot1^4+7=3\)

B(x)

\(6\cdot2^3+2\cdot2^4-8\cdot2-5-2\cdot2^3-2^2=39\)

c)\(6x^3-2x^3-7x-12-2\)

31 tháng 3 2020

Ta có: M(x)=x4+2x2+1

1. Thay x=1 vào M(x) ta được: M(1)=1+2.1+1=4

Thay x=-1 vào M(x) ta được: M(-1)=(-1)2+2.(-1)2+1=4

2. Đặt t=x2 (t\(\ge\)0)

Ta được: M(t)=t2+2t+1=(t+1)2=0

\(\Leftrightarrow t=-1\) (KTM)

\(\Rightarrow\) M(x) vô nghiệm (dpcm)

Bạn tham khảo nha, không hiểu thì cứ hỏi mình nha