K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 2 2022

a, \(A=2x^2+x+6\)

Với x = 1 suy ra A = 2 + 1 + 6 = 9 

Với x = 1/2 suy ra A = 1/2 + 1/2 + 6 = 7 

b, \(B=7x-6y-5\)Thay x = 3 ; y = -2 ta được 

B = 7.3 - 6 ( - 2 ) - 5 = 21 + 12 - 5 = 33 - 5 = 28 

13 tháng 2 2017

1) \(P=\frac{16x^4y^6}{9}.\frac{9x^2y^4}{4}=4x^6y^{10}\), đa thức bậc 16, hệ số là 4, biến là \(x^6y^{10}\)

Tại x=-1, y=1 thay vào ta được: P=4

2) \(f\left(x\right)=x^5+x^3-4x^2-2x+5\)

\(g\left(x\right)=x^5-x^4+2x^2-3x+1\)

\(h\left(x\right)=f\left(x\right)+g\left(x\right)=2x^5-x^4+x^3-2x^2-5x+6\)

3) \(B=\frac{x^2+y^2+2+5}{x^2+y^2+2}=1+\frac{5}{x^2+y^2+2}\le1+\frac{5}{0+0+2}=\frac{7}{2}\)

Do B LN <=> \(\frac{5}{x^2+y^2+2}\)LN <=> \(x^2+y^2+2\)NN <=> x=y=0

4) Ta thấy 51x+26y=2000

CHÚ Ý: VP chẵn => VT chẵn mà 26y chẵn nên => 51x chẵn => x=2

Thay vào ta tìm được y=73 ( thỏa mãn là số nguyên tố)

vậy x=2, y=73

5) Nhận xét: VP \(\ge\)0 => VT \(\ge\)0 => \(y^2\le25\Rightarrow y=0,1,2,3,4,5\)

Mà VP chẵn => y lẻ => y=1,3,5

Thay y=1,3,5 vào ta được y=5, x=2009 là thỏa mãn

12 tháng 4 2024

Bài 1:

|\(x\)| = 1 ⇒ \(x\) \(\in\) {-\(\dfrac{1}{3}\); \(\dfrac{1}{3}\)}

A(-1) = 2(-\(\dfrac{1}{3}\))2 - 3.(-\(\dfrac{1}{3}\)) + 5

A(-1) = \(\dfrac{2}{9}\) + 1 + 5

A (-1) = \(\dfrac{56}{9}\)

A(1) = 2.(\(\dfrac{1}{3}\) )2- \(\dfrac{1}{3}\).3 + 5

A(1) = \(\dfrac{2}{9}\) - 1 + 5

A(1) = \(\dfrac{38}{9}\)

 

12 tháng 4 2024

|y| = 1 ⇒ y \(\in\) {-1; 1} 

⇒ (\(x;y\)) = (-\(\dfrac{1}{3}\); -1); (-\(\dfrac{1}{3}\); 1); (\(\dfrac{1}{3};-1\)); (\(\dfrac{1}{3};1\))

B(-\(\dfrac{1}{3}\);-1) = 2.(-\(\dfrac{1}{3}\))2 - 3.(-\(\dfrac{1}{3}\)).(-1) + (-1)2

B(-\(\dfrac{1}{3}\); -1) = \(\dfrac{2}{9}\) - 1 + 1

B(-\(\dfrac{1}{3}\); -1) = \(\dfrac{2}{9}\)

B(-\(\dfrac{1}{3}\); 1) = 2.(-\(\dfrac{1}{3}\))- 3.(-\(\dfrac{1}{3}\)).1 + 12

B(-\(\dfrac{1}{3};1\)) = \(\dfrac{2}{9}\) + 1 + 1

B(-\(\dfrac{1}{3}\); 1) = \(\dfrac{20}{9}\) 

B(\(\dfrac{1}{3};-1\)) = 2.(\(\dfrac{1}{3}\))2 - 3.(\(\dfrac{1}{3}\)).(-1) + (-1)2

B(\(\dfrac{1}{3}\); -1) = \(\dfrac{2}{9}\) + 1 + 1

B(\(\dfrac{1}{3}\); -1) = \(\dfrac{20}{9}\)

B(\(\dfrac{1}{3}\); 1) = 2.(\(\dfrac{1}{3}\))2 - 3.(\(\dfrac{1}{3}\)).1 + (1)2

B(\(\dfrac{1}{3}\); 1) = \(\dfrac{2}{9}\) - 1 + 1

B(\(\dfrac{1}{3}\);1) = \(\dfrac{2}{9}\)