K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2020

ĐK x>5

BPT<=> \(x-4\le2\) ( rút gọn cả tử và mẫu cho \(\sqrt{x-5}>0\))

<=>x\(\le\)6

Kết hợp với ĐK => 5<x\(\le\)6

NV
8 tháng 3 2019

ĐKXĐ: \(-4\le x\le6\)

Do \(\sqrt{\left(x+4\right)\left(6-x\right)}\ge0\Rightarrow2\left(x+1\right)\ge0\Rightarrow x\ge-1\)

Khi đó, bình phương 2 vế ta được:

\(\left(x+4\right)\left(6-x\right)\le4\left(x+1\right)^2\)

\(\Rightarrow-x^2+2x+24\le4x^2+8x+4\)

\(\Rightarrow5x^2+6x-20\ge0\) \(\Rightarrow\left[{}\begin{matrix}x\le\frac{-3-\sqrt{109}}{5}\\x\ge\frac{-3+\sqrt{109}}{5}\end{matrix}\right.\)

Kết hợp điều kiện \(-4\le x\le6\)\(-1\le x\) ta được: \(\frac{-3+\sqrt{109}}{5}\le x\le6\)

\(\Rightarrow\left\{{}\begin{matrix}a=3\\b=5\end{matrix}\right.\) \(\Rightarrow2a+3b=21\)

19 tháng 3 2021

1.

ĐKXĐ: \(x=2\)

Xét \(x=2\), bất phương trình vô nghiệm

\(\Rightarrow\) bất phương trình đã cho vô nghiệm

\(\Rightarrow\) Không tồn tại \(a,b\) thỏa mãn

Đề bài lỗi chăng.

NV
29 tháng 4 2020

ĐKXĐ: \(\left[{}\begin{matrix}x\ge3\\x\le-3\end{matrix}\right.\) ; \(x\ne-5\)

- Với \(x=\pm3\) thỏa mãn

- Với \(x\ne\pm3\)

\(\Leftrightarrow\frac{3x-1}{x+5}\le x\Leftrightarrow x-\frac{3x-1}{x+5}\ge0\)

\(\Leftrightarrow\frac{x^2+2x+1}{x+5}\ge0\Leftrightarrow\frac{\left(x+1\right)^2}{x+5}\ge0\)

\(\Rightarrow x>-5\)

Vậy nghiệm của BPT trên \(\left[-5;5\right]\) là: \(\left[{}\begin{matrix}-5< x\le-3\\3\le x\le5\end{matrix}\right.\)

Tính tổng nghiệm hay tổng nghiệm nguyên?

Tổng nghiệm là \(\sum x=5\)

29 tháng 4 2020

tổng nghiệm nguyên b

5 tháng 4 2020

ĐK: \(x\ge\frac{2}{3}\)

\(\left(\sqrt{3x-2}-1\right)\sqrt{x^2+1}< 0\)

<=> \(\sqrt{3x-2}-1< 0\)

<=> \(\sqrt{3x-2}< 1\)

<=> 3x - 2 < 1

<=> x < 1

Đối chiếu đkxđ: Vậy \(\frac{2}{3}\le x< 1\)

5 tháng 4 2020

mày đoán xem

NV
14 tháng 3 2020

a/ ĐKXĐ: ....

\(VT=\sqrt{11+x}+\sqrt{1-x}\ge\sqrt{11+x+1-x}=\sqrt{12}\)

\(VP=2-\frac{x^2}{4}\le2< \sqrt{12}\)

\(\Rightarrow VP< VT\Rightarrow\) BPT vô nghiệm

b/

ĐKXĐ: ...

- Với \(x\le0\Rightarrow VT\le0< VP\Rightarrow\) BPT vô nghiệm

- Với \(x>0\) \(\Rightarrow x>2\) hai vế đều dương, bình phương:

\(x^2+\frac{4x^2}{x^2-4}+\frac{4x^2}{\sqrt{x^2-4}}>45\)

\(\Leftrightarrow\frac{x^4}{x^2-4}+\frac{4x^2}{\sqrt{x^2-4}}-45>0\)

Đặt \(\frac{x^2}{\sqrt{x^2-4}}=t>0\)

\(\Rightarrow t^2+4t-45>0\Rightarrow\left[{}\begin{matrix}t< -9\left(l\right)\\t>5\end{matrix}\right.\)

\(\Rightarrow\frac{x^2}{\sqrt{x^2-4}}>5\Leftrightarrow x^4>25\left(x^2-4\right)\)

\(\Leftrightarrow x^4-25x^2+100>0\Rightarrow\left[{}\begin{matrix}x^2< 5\\x^2>20\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2< x< \sqrt{5}\\x>2\sqrt{5}\end{matrix}\right.\)

NV
14 tháng 3 2020

c/

ĐKXĐ: \(-2\le x\le2\)

Do \(-2\le x\le2\Rightarrow x+2\ge0\Rightarrow VT\ge0\) \(\forall x\)

\(VP=-2x-8=-2\left(x+2\right)-4\le-4< 0\)

\(\Rightarrow VP< VT\)

Vậy BPT đã cho vô nghiệm

NV
22 tháng 2 2020

Do \(2x^2+x+1>0\) \(\forall x\) nên BPT tương đương:

\(\left(5-m\right)x^2-2\left(m+1\right)x+1< 0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=5\\\Delta'=\left(m+1\right)^2-\left(5-m\right)>0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}m=5\\m^2+3m-4>0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m< -1\\m>4\end{matrix}\right.\)