Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : |x - 3|2 luôn luôn lớn hơn hoặc bằng 0 với mọi x
|x - 3| luôn luôn lớn hơn hoặc bằng 0 với mọi x
Mà |x - 3|2 + |x - 3| = 0
Suy ra : \(\hept{\begin{cases}\left|x-3\right|^2=0\\\left|x-3\right|=0\end{cases}}\) \(\Rightarrow\left|x-3\right|=0\)
\(\Rightarrow x-3=0\Rightarrow x=3\)
\(\left(x-2\right)^2.\left(y-3\right)^2=-4\)
\(\Rightarrow\) Phải có ít nhât 1 số âm
Mà \(\hept{\begin{cases}\left(x-2\right)^2\ge0\\\left(y-3\right)^2\ge0\end{cases}}\Leftrightarrow x,y\in\left\{\varnothing\right\}\)
x2 + 4x + 13 chia hết cho x + 4
=> [(x2 + 4x + 13) - x.(x+4)] chia hết cho x + 4
=> x2 + 4x + 13 - x2 - 4x chia hết cho x + 4
=> 13 chia hết cho x + 4
=> x + 4 thuộc Ư(13) = {-13; -1; 1; 13}
=> x thuộc {-17; -5; -3; 9}
Vậy...có 4 phần tử.
Lí luận chung cho cả 4 câu :
Để tích này bé hơn 0 thì các thừa số phải trái dấu với nhau
a) Dễ thấy \(x-2>x-7\)
\(\Rightarrow\hept{\begin{cases}x-2>0\\x-7< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x>2\\x< 7\end{cases}\Leftrightarrow}2< x< 7}\)
b) tương tự
c) \(\left(x^2-1\right)\left(x^2-4\right)\left(x^2-7\right)\left(x^2-10\right)< 0\)
\(\Leftrightarrow\left(x^4-11x^2+10\right)\left(x^4-11x^2+28\right)< 0\)
Dễ thấy \(x^4-11x^2+10< x^4-11x^2+28\)
\(\Rightarrow\hept{\begin{cases}x^4-11x^2+10< 0\\x^4+11x^2+10>0\end{cases}}\)
Tự giải nốt nha bạn mình bận rồi
(x-23)(x+12)=0
<=>x-23=0 hoac x+12=0
<=>x=23 hoac x=-12