Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: <Cho là câu a đi>:
a. \(\frac{1}{2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}=\frac{49}{50}\)
\(\rightarrow\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}=\frac{49}{50}\)
\(\rightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{49}{50}\)
\(\rightarrow1-\frac{1}{x+1}=\frac{49}{50}\)
\(\rightarrow\frac{1}{x+1}=1-\frac{49}{50}=\frac{1}{50}\)
\(\rightarrow x+1=50\rightarrow x=49\)
Vậy x = 49.
Lí luận chung cho cả 4 câu :
Để tích này bé hơn 0 thì các thừa số phải trái dấu với nhau
a) Dễ thấy \(x-2>x-7\)
\(\Rightarrow\hept{\begin{cases}x-2>0\\x-7< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x>2\\x< 7\end{cases}\Leftrightarrow}2< x< 7}\)
b) tương tự
c) \(\left(x^2-1\right)\left(x^2-4\right)\left(x^2-7\right)\left(x^2-10\right)< 0\)
\(\Leftrightarrow\left(x^4-11x^2+10\right)\left(x^4-11x^2+28\right)< 0\)
Dễ thấy \(x^4-11x^2+10< x^4-11x^2+28\)
\(\Rightarrow\hept{\begin{cases}x^4-11x^2+10< 0\\x^4+11x^2+10>0\end{cases}}\)
Tự giải nốt nha bạn mình bận rồi
Ta có:\(\left(x-2\right)^2.\left(y-3\right)^2=-4\)
\(\Rightarrow\left[\left(x-2\right).\left(y-3\right)\right]^2=-4\)
Lại có:\(VP< 0\) mà \(VT\ge0\)
nên ko có x,y thỏa mãn
1, Có (x-2)2\(\ge\)0
(y-2)2\(\ge\)0
=>(x-2)2.(y-3)2\(\ge\)0
Mà (x-2)2.(y-3)2=-4
Vậy không có x, y thỏa mãn
Có 111...1=11.1010...01
Vậy số 111...1(2002 số 1) sẽ chia hết cho 11 nên nó sẽ là hợp sô
(phần này hơi sơ sài nên có cái gì phải hỏi luôn
a)
Gọi d=(2n+1;3n+2)
Ta có
2n+1\(⋮\)d => 3(2n+1)=6n+3\(⋮\)d
3n+2\(⋮\)d => 2(3n+2)=6n+4\(⋮\)d
=> 6n+4-(6n+3)=1\(⋮\)d
hay d=1
Vậy 2n+1 và 3n+2 là số nguyên tố cùng nhau
a) Gọi \(\left(2n+1;3n+2\right)=d\)
\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\3n+2⋮d\end{cases}\Rightarrow\hept{\begin{cases}6n+3⋮d\\6n+4⋮d\end{cases}}}\)
\(\Rightarrow\left(6n+4\right)-\left(6n+3\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d\inƯ\left(1\right)=\left\{\pm1\right\}\)
Vậy 2n+1 và 3n+2 nguyên tố cùng nhau
Xét \(a^2+b^2+c^2\ge\frac{1}{3}\left(a+b+c\right)^2\)
<=> \(\)\(a^2+b^2+c^2\ge ab+bc+ac\)
<=> \(\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\ge0\)luôn đúng
=> \(a^2+b^2+c^2\ge\frac{1}{3}\left(a+b+c\right)^2\)
Dấu bằng xảy ra khi a=b=c
Áp dụng ta có
\(\left(2x+1\right)^2+\left(-y\right)^2+\left(y-2x\right)^2\ge\frac{1}{3}\left(2x+1-y+y-2x\right)^2=\frac{1}{3}=VP\)
Dấu bằng xảy ra khi \(2x+1=-y=y-2x\)=> \(\hept{\begin{cases}x=-\frac{1}{3}\\y=-\frac{1}{3}\end{cases}}\)
Vậy \(x=y=-\frac{1}{3}\)
\(\left(2x+1\right)^2+y^2+\left(y-2x\right)^2=\frac{1}{3}\)
\(\Leftrightarrow3\left(x-y\right)^2+\left(3x+1\right)^2=0\)
\(\Leftrightarrow x=y=-\frac{1}{3}\)
\(c,-5\left(2-x\right)+4\left(x-3\right)=10x-15\)
\(-10+5x+4x-12=10x-15\)
\(5x+4x-10x-10-12=-15\)
\(-x-10=-3\)
\(-x=7\)
\(x=-7\)
Vậy \(x=-7.\)
Những câu khác bạn nên tự làm...
a) −7. (5 - x) − 2. (x − 10) = 15
-35 + 7x - 2x + 20 = 15
7x - 2x = 35 - 20 + 15
5x = 30
x = 30 : 5
x = 6
Vậy x = 6
b) 4. (2 − x) + 3(x − 5) = 14
8 - 4x + 3x - 15 = 14
8 - 15 - 14 = 4x - 3x
-21 = x
Vậy x = -21
c) −5. (2 − x) + 4. (x − 3) = 10x −15
-10 + 5x + 4x - 12 = 10x - 15
-10 - 12 + 15 = 10x - 5x - 4x
-7 = x
Vậy x = -7
d) −7. (3x − 5) + 2. (7x − 14) = 28
-21x + 35 + 14x - 28 = 28
35 - 28 - 28 = 21x - 14x
-21 = 7x
x = (-21) : 7
x = -3
Vậy x = -3
e) 5. (4 − x) − 7(−x + 2) = 4 − 9 + 3
20 - 5x + 7x - 14 = -2
-5x + 7x = -2 - 20 + 14
2x = -8
x = (-8) : 2
x = -4
Vậy x = -4
f) 5. (x − 7) + 10. (3 − x) = 20
5x - 35 + 30 - 10x = 20
-35 + 30 - 20 = -5x + 10x
-25 = 5x
x = (-25) : 5
x = -5
Vậy x = -5
g) −4. (x + 1) + 8. (x − 3) = 24
-4x - 4 + 8x - 24 = 24
-4x + 8x = 24 + 4 + 24
4x = 52
x = 52 : 4
x = 13
Vậy x = 13
h) 4. (x − 1) − 3. (x − 2) = −|−5|
4x - 4 - 3x + 6 = -5
4x - 3x = -5 + 4 - 6
x = -7
Vậy x = -7
\(\left(x-2\right)^2.\left(y-3\right)^2=-4\)
\(\Rightarrow\) Phải có ít nhât 1 số âm
Mà \(\hept{\begin{cases}\left(x-2\right)^2\ge0\\\left(y-3\right)^2\ge0\end{cases}}\Leftrightarrow x,y\in\left\{\varnothing\right\}\)
Đáp Án : X : 4 ; 3 ; 0 ; -1
Y: 2 ; 1 ; 4 ; 5
~Nguyên~