Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: <Cho là câu a đi>:
a. \(\frac{1}{2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}=\frac{49}{50}\)
\(\rightarrow\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}=\frac{49}{50}\)
\(\rightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{49}{50}\)
\(\rightarrow1-\frac{1}{x+1}=\frac{49}{50}\)
\(\rightarrow\frac{1}{x+1}=1-\frac{49}{50}=\frac{1}{50}\)
\(\rightarrow x+1=50\rightarrow x=49\)
Vậy x = 49.
\(a,\left(4\frac{1}{2}-\frac{2}{5}x\right):1\frac{3}{4}=\frac{11}{14}\)
\(\Rightarrow\left(\frac{9}{2}-\frac{2}{5}x\right):\frac{7}{4}=\frac{11}{4}\)
\(\Rightarrow\left(\frac{9}{2}-\frac{2}{5}x\right)=\frac{11}{4}\cdot\frac{7}{4}\)
\(\Rightarrow\left(\frac{9}{2}-\frac{2}{5}x\right)=\frac{77}{16}\)
\(\Rightarrow\frac{9}{2}-\frac{2}{5}x=\frac{77}{16}\)
\(\Rightarrow-\frac{2}{5}x=\frac{77}{16}-\frac{9}{2}\)
\(\Rightarrow-\frac{2}{5}x=\frac{5}{16}\)
\(\Rightarrow x=\frac{5}{16}:\left(-\frac{2}{5}\right)\)
\(\Rightarrow x=-\frac{25}{32}\)
\(b,\frac{2}{3}\cdot x-\frac{2}{5}x=\frac{9}{3}\)
\(\Rightarrow x\left(\frac{2}{3}-\frac{2}{5}\right)=\frac{8}{3}\)
\(\Rightarrow x\cdot\frac{4}{15}=\frac{8}{3}\)
\(\Rightarrow x=\frac{8}{3}:\frac{4}{15}\)
\(\Rightarrow x=10\)
\(c,\frac{-2}{3}|x|+1\frac{1}{2}=\frac{2}{5}\)
\(\Rightarrow\frac{-2}{3}|x|+\frac{3}{2}=\frac{2}{5}\)
\(\Rightarrow\frac{-2}{3}|x|=\frac{2}{5}-\frac{3}{2}\)
\(\Rightarrow\frac{-2}{3}|x|=-\frac{11}{10}\)
\(\Rightarrow|x|=\frac{-11}{10}:\frac{-2}{3}\)
\(\Rightarrow|x|=\frac{33}{20}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{33}{20}\\x=-\frac{33}{20}\end{cases}}\)
\(d,|2x-\frac{1}{3}|+\frac{1}{6}=\frac{3}{4}\)
\(\Rightarrow|2x-\frac{1}{3}|=\frac{3}{4}-\frac{1}{6}\)
\(\Rightarrow|2x-\frac{1}{3}|=\frac{7}{12}\)
\(\Rightarrow\orbr{\begin{cases}2x-\frac{1}{3}=\frac{7}{12}\\2x-\frac{1}{3}=-\frac{7}{12}\end{cases}\Rightarrow\orbr{\begin{cases}2x=\frac{11}{12}\\2x=-\frac{1}{4}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{11}{24}\\x=-\frac{1}{8}\end{cases}}}\)
a) x = 8
Vì khi cơ số là 0 thì có mũ mấy lên bao nhiêu cũng = 0
=>( 2.8-16)^8-(2.8-16)^3=(16-16)^8-(16-16)^3=0^8-0^3=0-0=0
b) x = 2
Vì khi cơ số =1 thì mũ lên bao nhiêu cũng =1
Mỏi tay quá , chắc đến đây đã hiểu rồi tự làm nha ! Nhớ ks nhé !
\(-28-7.|-3\chi+15|=-70\)
\(\Rightarrow7.|-3\chi+15|=42\)
\(\Rightarrow|-3\chi+15|=6\)
\(\Rightarrow\orbr{\begin{cases}-3\chi+15=6\\-3\chi+15=-6\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}-3\chi=-9\\-3\chi=-21\end{cases}}\Rightarrow\orbr{\begin{cases}\chi=3\\\chi=7\end{cases}}\)
HTDT
\(c,12-2\left(-\chi+3\right)^2=-38\)
\(\Rightarrow2\left(-\chi+3\right)^2=50\)
\(\Rightarrow\left(-\chi-3\right)^2=25\)
\(\Rightarrow\left(-\chi-3\right)^2=\left(\pm5\right)^2\)
\(\Rightarrow\orbr{\begin{cases}-\chi-3=5\\-\chi-3=-5\end{cases}}\Rightarrow\orbr{\begin{cases}\chi=-8\\\chi=-2\end{cases}}\)
HTDT
Tìm x
\(a,2x-25\%=\frac{1}{2}\)
\(b,\left(\frac{3x}{7}+1\right).\left(-0,25\right)=\frac{-1}{28}\)
\(\)
\(\left|x-3\right|=2x+4\)
\(\left|x-3\right|=2x+2\cdot2\)
\(\left|x-3\right|=2\left(x+2\right)\)
\(\Rightarrow\orbr{\begin{cases}x-3=-\left[2\cdot\left(x+2\right)\right]\\x-3=2\left(x+2\right)\end{cases}}\) \(\Rightarrow\orbr{\begin{cases}x-3=-\left[2x+4\right]\\x-3=2x+2\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x-3=-2x-4\\x=2x+2+3\end{cases}}\) \(\Rightarrow\orbr{\begin{cases}x=-2x-4+3\\x=2x+5\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-2x-1\\x=2x+5\end{cases}}\) \(.....................\)
mk thấy chỉ cần 1 dữ kiện là tìm được x,y,z rùi
x + y = y - 1 = z + 1
=> x + y - y = -1 = z + 1
=> x = -1 = z + 1
=> x = -1
z + 1 = -1 => z = -2
y - 1 = z + 1
=> y - z = 1 + 1 = 2
=> y - (-2) = 2 => y + 2 = 2 => y = 2 - 2 = 0
a) Ta có:
\(x-\left\{\left[-x-\left(x+3\right)\right]-\left[\left(x+2018\right)-\left(x+2019\right)\right]+21\right\}\)
\(=x-\left\{\left[-x-x-3\right]-\left[x+2018-x-2019\right]+21\right\}\)
\(=x-\left\{\left[-2x-3\right]-\left[2018-2019\right]+21\right\}\)
\(=x+2x+-3+1-21\)
\(=3x-23\)
=> \(3x-23=2020\)
\(3x=2020+23=2043\)
=> \(x=2043:3=681\)
Nhầm
\(=x-\left\{-2x-3+1+21\right\}\\ =x+2x+3-1-21\)
\(=3x-17\\ =>3x-17=2020\\ 3x=2020+17=2037\\ x=2037:3=679\)
Xét \(a^2+b^2+c^2\ge\frac{1}{3}\left(a+b+c\right)^2\)
<=> \(\)\(a^2+b^2+c^2\ge ab+bc+ac\)
<=> \(\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\ge0\)luôn đúng
=> \(a^2+b^2+c^2\ge\frac{1}{3}\left(a+b+c\right)^2\)
Dấu bằng xảy ra khi a=b=c
Áp dụng ta có
\(\left(2x+1\right)^2+\left(-y\right)^2+\left(y-2x\right)^2\ge\frac{1}{3}\left(2x+1-y+y-2x\right)^2=\frac{1}{3}=VP\)
Dấu bằng xảy ra khi \(2x+1=-y=y-2x\)=> \(\hept{\begin{cases}x=-\frac{1}{3}\\y=-\frac{1}{3}\end{cases}}\)
Vậy \(x=y=-\frac{1}{3}\)
\(\left(2x+1\right)^2+y^2+\left(y-2x\right)^2=\frac{1}{3}\)
\(\Leftrightarrow3\left(x-y\right)^2+\left(3x+1\right)^2=0\)
\(\Leftrightarrow x=y=-\frac{1}{3}\)