K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 6 2017

Gọi AH là chiều cao của tam giác APF.

Ta có: SAPF = AH.PF/2.

a) SPIF = SPAF

⇔ chiều cao IK = AH (Chung cạnh đáy PF).

⇔ I nằm trên đường thẳng song song với PF và cách PF 1 khoảng bằng AH.

b) SPOF = 2.SPAF

⇔ chiều cao OM = 2.AH

⇔ O nằm trên đường thẳng song song với PF và cách PF một khoảng bằng 2.AH

c) Giải bài 22 trang 122 Toán 8 Tập 1 | Giải bài tập Toán 8

⇔ chiều cao NQ = AH/2

⇔ N nằm trên đường thẳng song song với PF và cách PF một khoảng bằng AH/2.

Giải bài 22 trang 122 Toán 8 Tập 1 | Giải bài tập Toán 8

22 tháng 4 2017

Ta có :

SAMB = \(\dfrac{1}{2}\) BM. AH

SAMC = \(\dfrac{1}{2}\)CM. AH

mà BM = CM (vì AM là đường trung tuyến)

Vậy SAMB = SAMC


21 tháng 4 2017

Theo giả thiết, M là điểm nằm trong tam giác ABC sao cho SMAC = SAMB + SBMC

Nhưng SAMB + SBMC + SMAC = SABC

Suy ra SMAC = SABC

∆ MAC = ∆ABC có chung đáy BC nên MK = BH. Vậy điểm M nằm trên đường trung bình EF của ∆ABC.

>>>>> Bí kíp học tốt các môn lớp 8 2017 bởi các Thầy C

3 tháng 12 2019

sai rồi cậu ơi. SABC=2SMAC mà

16 tháng 12 2019

Bai 1

Bo de :  \(\Delta ABC\) trung tuyen AD 

\(\Rightarrow S_{ADB}=S_{ADC}\)

cai nay ban tu chung minh nha

Ap dung bo de va bai nay => \(S_{MNPQ}=S_{MQP}+S_{MNP}=\frac{1}{3}S_{MDC}+\frac{1}{3}S_{ABP}\)

ta phai chung minh \(S_{MDC}+S_{ABP}=S_{ABCD}\)

That vay co \(S_{AMP}=S_{AMD},S_{MBP}=S_{MBC}\)

=> \(S_{ABP}+S_{MDC}=S_{ADM}+S_{MDC}+S_{MBC}=S_{ABCD}\)

=> dpcm

16 tháng 12 2019

Hình như sai ở dòng thứ 2 từ dưới lên trên ấy

Hướng dẫn giải:

Gọi S là diện tích hình thang ABCD.

1) Theo công thức

S = BH(BC+DA)2BH(BC+DA)2

Ta có: AD = AH + HK + KD

=> AD = 7 + x + 4 = 11 + x

Do đó: S = x(11+2x)2x(11+2x)2

2) Ta có: S = SABH + SBCKH + SCKD.

= 1212.AH.BH + BH.HK + 1212CK.KD

= 1212.7x + x.x + 1212x.4

= 7272x + x2 + 2x

Vậy S = 20 ta có hai phương trình:

x(11+2x)2x(11+2x)2 = 20 (1)

7272x + x2 + 2x = 20 (2)

Cả hai phương trình không có phương trình nào là phương trình bậc nhất.

2 tháng 1 2019

a) theo cách tính thứ nhất, diện tích hình thang là :

SABCD= BH.(BC+AD):2= x(x+7+x+4):2

=x(2x+11):2 = \(\dfrac{1}{2}\)x(2x+11) (đvdt) (1)

b) theo cách tính thứ hai

SABCD=SAHB+SCKD= \(\dfrac{1}{2}\).7x+x2+\(\dfrac{1}{2}\).4x

=\(\dfrac{7x+2x^2+4x}{2}\)= \(\dfrac{2x^2+11x}{2}\) (đvdt) (2)

Với S = 20 thì (1) và (2) trở thành x2+5,5x =20 thì đây là một phương trình bậc hai (vì có x2).

Vậy trong hai phương trình trên không có phương trình nào là phương trình bậc nhất.