Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác ABD vuông tại A và tam giác EBD vuông tại E có:
ABD = EBD (BD là tia phân giác của ABE)
BD là cạnh chung
=> Tam giác ABD = Tam giác EBD (cạnh huyền - góc nhọn)
=> AD = ED (2 cạnh tương ứng)
mà ED < CD (bất đẳng thức tam giác EDC vuông tại E)
=> AD < CD
AB = EB (tam giác ABD = tam giác EBD)
=> Tam giác BAE cân tại B
mà BD là tia phân giác của ABE
=> BD là đương cao của tam giác BAE
hay BD _I_ AE
Xét tam giác ADF và tam giác EDC có:
FAD = CED (= 900)
AD = ED (tam giác ABD = tam giác EBD)
ADF = EDC (2 góc đối đỉnh)
=> Tam giác ADF = Tam giác EDC (g.c.g)
=> AF = EC (2 cạnh tương ứng)
mà AB = EB (tam giác ABD = tam giác EBD)
=> AF + AB = EC + EB
hay BF = BC
=> Tam giác BFC cân tại B
mà BD là tia phân giác của FBC
=> BD là đường cao của tam giác BFC
hay BD _I_ FC
mà BD _I_ AE
=> FC // AE
mà
mà BD là tia phân giác của
a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=góc EBD
=>ΔBAD=ΔBED
=>BA=BE và DA=DE
=>BD là trung trực của AE
b: Xet ΔDAF vuông tại A và ΔDEC vuông tạiE có
DA=DE
góc ADF=góc EDC
=>ΔDAF=ΔDEC
=>DF=DC
c: AD=DE
mà DE<DC
nên AD<CD
d: Xét ΔBFC có BA/AF=BE/EC
nên AE//FC
a: Xét ΔBAD và ΔBED có
BA=BE
góc ABD=góc EBD
BD chung
Do đó: ΔBAD=ΔBED
=>DA=DE
b: BA+AF=BF
BE+EC=BC
mà BA=BE và AF=EC
nên BF=BC
ΔBFC cân tại B
mà BD là phân giác
nên BD vuông góc FC
c: Xét ΔBFC có BA/AF=BE/EC
nên AE//CF
d: ΔBAD=ΔBED
=>góc BED=góc BAD=90 độ
Xét ΔDAF vuông tại A và ΔDEC vuông tại E có
DA=DE
AF=EC
Do đó:ΔDAF=ΔDEC
=>góc ADF=góc EDC
=>góc ADF+góc ADE=180 độ
=>E,D,F thẳng hàng
MÌnh nói sơ qua nhé :
a) Tam giác BEA cân tại B vì Có đường cao từ B đồng thời là đường phân giác
=> BA= BE
b) Tam giác BAD và tam giác BED bằng nhau theo trường hợp cạnh góc cạnh ( BD chung; góc ABD = góc EBD; AB= BE)
=> góc BAD = góc BDE= 90độ ( 2 góc tương ứng)
=> tam giác BDE vuông tại E
c) Sai đề
Mấy câu trên bạn lm được rồi mimhf sẽ không giải nữa mà chỉ làm câu d thôi.
Ta có : các điểm D; E; F lần lượt nằm trên các cạnh AC; AB; BC
Mà 3 đoạn thẳng AF; BD; CE đồng quy tại H
Áp dụng định lý Ceeva vào tam giác ABC ta được:
EA/EB . FB/FC . DC/DA = 1
Xét tam giác BAD và BED :
BD chung
gócBAD=BED
gócABD=EBD
suy ra tam giác BAD =tam giác BED
nên AD=ED;BA=BE
Tam giác DEC vuông tại E suy ra DE<DC\(\Rightarrow\)AD<DC
b)XÉt tam giác ADF và EDC:
gócFAD=CED
AD=ED
gócADF=EDC
suy ra tam giác ADF=EDC\(\Rightarrow\)AF =EC
BF=BA+AF
BC=BE+EC
\(\Rightarrow\)BF=BC
\(\Rightarrow\)tam Giác BFC cân
mà có BD là phân giác \(\Rightarrow\)BD-/-FC
A B C D E F
c)ta có BA=BE(cmt)
nên tam giác BAE cân tại B
mà BD là phân giác \(\Rightarrow\)BD-/-AE
Ta lại có BD-/-FC\(\Rightarrow\)AE//FC