K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2021

2 lần 1 câu mới tăng

_HT_

12 tháng 10 2021

bạn phải đc k nhiều hơn nx chứ trong 1 ngày bạn ko thể tăng điểm sp đâu

18 tháng 2 2022

Vì căn bậc 2 của 5 lớn hơn 1

18 tháng 2 2022

Ta có:

\(\sqrt{5}>\sqrt{4}=2\)

⇒ \(\left(1-\sqrt{5}\right)< \left(1-\sqrt{4}\right)=-1\)

⇒ \(\left(1-\sqrt{5}\right)< 0\)

4 tháng 10 2023

Pt xác định khi: 

\(\left\{{}\begin{matrix}5x-4\ge0\\2-x\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{4}{5}\\x\le2\end{matrix}\right.\)

\(\Leftrightarrow\dfrac{4}{5}\le x\le2\)

Nhưng trong TH này cậu phải làm cả hai nhé ! 

4 tháng 10 2023

\(\sqrt[]{5x-4}=2-x\)

Phải lấy điều kiện \(2-x\ge0\) vì phương trình trên có dạng :

\(\sqrt[]{A}=B\) nên khi đặt điều kiện \(B\ge0\) thì chắc chắn \(\sqrt[]{A}\ge0\)  

Nên không cần điều kiện \(A\ge0\) mà chỉ cần điều kiện \(B\ge0\) hay \(2-x\ge0\) là đủ.

AH
Akai Haruma
Giáo viên
23 tháng 8 2021

Đơn giản là em đang xem một lời giải sai. Việc khẳng định $P\leq 0$ hoặc $P>0$ rồi kết luận hàm số không có GTLN là sai.

Bởi vậy những câu hỏi ở dưới là vô nghĩa.

Việc gọi $P$ là hàm số lên lớp cao hơn em sẽ được học, còn bây giờ chỉ cần gọi đơn giản là phân thức/ biểu thức.

Hàm số, có dạng $y=f(x)$ biểu diễn mối liên hệ giữa biến $x$ với biến phụ thuộc $y$. Mỗi giá trị của $x$ ta luôn xác định được một giá trị tương ứng của $y$.

 

 

AH
Akai Haruma
Giáo viên
23 tháng 8 2021

$P=AB=\frac{\sqrt{x}}{\sqrt{x}-1}=1+\frac{1}{\sqrt{x}-1}$

Để $P_{\max}$ thì $\frac{1}{\sqrt{x}-1}$ max

Điều này xảy ra khi $\sqrt{x}-1$ min và có giá trị dương 

$\Leftrightarrow x>1$ và $x$ nhỏ nhất

Trong tập số thực thì em không thể tìm được số lớn hơn 1 mà nhỏ nhất được. Như kiểu $1,00000000000000000000....$ (vô hạn đến không biết khi nào thì kết thúc)

Do đó $P$ không có max

Min cũng tương tự, $P$ không có min.