K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 12 2016

tại vì 1+1=2

 

10 tháng 12 2016

vì không bằng các số khác

 

15 tháng 2 2020

Ta thấy : \(\left(x+1\right)^2\ge0\forall x\)

\(\Rightarrow-\left(x+1\right)^2\le0\forall x\)

\(\Rightarrow\frac{1}{x^2+1}-\left(x+1\right)^2\le\frac{1}{x^2+1}\forall x\) ( đpcm )

Dấu "=" xảy ra \(\Leftrightarrow\left(x+1\right)^2=0\Leftrightarrow x=-1\)

29 tháng 12 2021

a: \(\overrightarrow{MA}=\left(1-x_M;-1\right)\)

\(\overrightarrow{MB}=\left(3-x_M;0\right)\)

Để ΔMAB vuông tại M thì \(\left(1-x_M\right)\left(3-x_M\right)-1=0\)

=>xM=2

11 tháng 8 2015

a) \(\overrightarrow{AB}\left(2;2\right);\overrightarrow{AC}\left(2;-2\right)\) . Vì \(\frac{2}{2}\ne\frac{2}{-2}\) nên \(\overrightarrow{AB};\overrightarrow{AC}\) không cùng phương => A; B; C không thẳng hàng

b) Gọi G là trọng tâm tam giác ABC => \(\begin{cases}x_G=\frac{x_A+x_B+x_C}{3}=\frac{-1+1+1}{3}=\frac{1}{3}\\y_G=\frac{y_A+y_B+y_C}{3}=\frac{1+3+\left(-1\right)}{3}=1\end{cases}\)=> G(1/3; 1)

c) ABCD là hình bình hành <=> \(\overrightarrow{AD}=\overrightarrow{BC}\Leftrightarrow\begin{cases}x_D-x_A=x_C-x_B\\y_D-y_A=y_C-y_B\end{cases}\) <=> \(\begin{cases}x_D+1=0\\y_D-1=-4\end{cases}\) <=> \(\begin{cases}x_D=-1\\y_D=-3\end{cases}\) Vậy D (-1;-3)

d)  \(\overrightarrow{AB}\left(2;2\right);\overrightarrow{AC}\left(2;-2\right)\)

=> \(\overrightarrow{AB}.\overrightarrow{AC}=2.2+2.\left(-2\right)=0\)  =>  \(\overrightarrow{AB};\overrightarrow{AC}\) vuông góc với nhau => tam giác ABC vuông tại A

Ta có: AB2 = 2+ 22 = 8 ; AC2 = 22 + (-2)2 = 8 => AB = AC => Tam giác ABC cân tại A

vậy...

e) Có thể đề của bạn là tam giác ABE vuông cân tại E  ( Khi đó giải điều kiện: EA = EB và vec tơ EA . Vec tơ EB = 0)

g) M nằm trên Ox => M (m; 0)

Tam giác OMA cân tại O <=> OM = OA  Hay OM2 = OA<=> m= (-1)+ 12 => m2 = 2 <=> m = \(\sqrt{2}\) hoặc m = -  \(\sqrt{2}\)

Vậy M (\(\sqrt{2}\); 0) ; M (-\(\sqrt{2}\); 0 )

14 tháng 12 2015

1 -3 A -5 3 B 2 -2 C M

a) Gọi điểm M(x,0). Ta có MA = MB

=> MA2 = MB2

=> (1 - x)2 + (-3 - 0)2 = (3 - x)2 + (-5 - 0)2

    1 - 2x + x2 + 9 = 9 - 6x + x2 + 25

    4x = 24

    x = 6

Vậy điểm M(6, 0)

b) Gọi N(0, y), ta có NA vuông góc với AB

=> Tích vô hướng giữa hai vector AN  và vector AB bằng 0

=> (0 - 1, y + 3) . (3 - 1, -5 + 3) = 0

     -2 - 2(y + 3) = 0

    y = -4

Vậy N(0, -4) 

bạn ghi lại đề đi bạn