Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải lại
điều kiện có 2 nghiệm\(\left(1\right)\left\{{}\begin{matrix}a\ne0\Rightarrow m+2\ne0\Rightarrow m\ne-2\\\Delta>0\Rightarrow\left(2m-1\right)^2-4\left(m+2\right)\left(m-3\right)=25\end{matrix}\right.\)
(2) có nghiệm thỏa mãn x1/x2 =1/2 hoặc x1/x2 =2
Phương trình có nghiệm x=1 với mọi m khác -2
\(\left[{}\begin{matrix}\dfrac{m-3}{m+2}=\dfrac{1}{2}\Rightarrow2m-3=m+2\Rightarrow m=8\\\dfrac{m-3}{m+2}=2\Rightarrow m-3=2m+4\Rightarrow m=-7\end{matrix}\right.\)
Kết luân
m= 8 hoặc m =-7
Lời giải
(1)Điều kiện có 2 nghiệm\(\left\{{}\begin{matrix}a\ne0\Rightarrow m+2\ne0\\\Delta>0\Rightarrow\left(2m-1\right)^2-4\left(m+2\right)\left(m-3\right)>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne-2\\\left(4m^2-4m+1\right)-4m^2+4m+24=25\end{matrix}\right.\) (1) \(\Leftrightarrow m\ne-2\)
(2) \(\left[{}\begin{matrix}\dfrac{x_1}{x_2}=\dfrac{1}{2}\\\dfrac{x_1}{x_2}=2\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x_1=\dfrac{2m-1-5}{2\left(m+2\right)}=\dfrac{m-3}{n+2}\\x_2=\dfrac{2m-1+5}{2\left(m+2\right)}=\dfrac{m+2}{2\left(m+2\right)}=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\dfrac{m-3}{m+2}=\dfrac{1}{2}\\\dfrac{m-3}{m+2}=2\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}2m-3.2=m+2\\m-3=m+2\end{matrix}\right.\) \(\Rightarrow m=8\)
Kết luận : m=8
Lời giải:
a) Đặt \(x^3=a\) thì pt trở thành:
\(a^2+2003a-2005=0\)
\(\Leftrightarrow (a+\frac{2003}{2})^2=2005+\frac{2003^2}{2^2}=\frac{4020029}{4}\)
\(\Rightarrow \left[\begin{matrix} a+\frac{2003}{2}=\sqrt{\frac{4020029}{4}}\\ a+\frac{2003}{2}=-\sqrt{\frac{4020029}{4}}\end{matrix}\right.\)
\(\Rightarrow \left[\begin{matrix} a=\sqrt{\frac{4020029}{4}}-\frac{2003}{2}\approx 1\\ a=-\sqrt{\frac{4020029}{4}}-\frac{2003}{2}\approx -2004\end{matrix}\right.\)
\(\Rightarrow \left[\begin{matrix} x=\sqrt[3]{a}\approx 1\\ x=\sqrt[3]{a}\approx \sqrt[3]{-2004}\end{matrix}\right.\)
b)
Đặt \(x^2=a(a\geq 0)\)
PT trở thành: \(\sqrt{2}a^2-2(\sqrt{2}+\sqrt{3})a+\sqrt{12}=0\)
\(\Delta'=(\sqrt{2}+\sqrt{3})^2-\sqrt{2}.\sqrt{12}=5\)
Theo công thức nghiệm của pt bậc 2 thì pt có 2 nghiệm:
\(\left\{\begin{matrix} a_1=\frac{(\sqrt{2}+\sqrt{3})+\sqrt{5}}{\sqrt{2}}\\ a_2=\frac{(\sqrt{2}+\sqrt{3})-\sqrt{5}}{\sqrt{2}}\end{matrix}\right.\)
Do đó \(x=\pm \sqrt{a}\in\left\{\pm \sqrt{\frac{\sqrt{2}+\sqrt{3}+\sqrt{5}}{\sqrt{2}}};\pm \sqrt{\frac{\sqrt{2}+\sqrt{3}-\sqrt{5}}{\sqrt{2}}}\right\}\)
Câu 2:
Đặt \(x^2=a\). PT ban đầu trở thành:
\(a^2+a+m=0(*)\)
\(\bullet \)Để pt ban đầu có 3 nghiệm pb thì $(*)$ phải có một nghiệm $a=0$ và một nghiệm $a>0$
Để $a=0$ là nghiệm của $(*)$ thì \(0^2+0+m=0\Leftrightarrow m=0\)
Khi đó: \((*)\Leftrightarrow a^2+a=0\). Ta thấy nghiệm còn lại là $a=-1< 0$ (vô lý)
Do đó không tồn tại $m$ để pt ban đầu có 3 nghiệm pb.
\(\bullet\) Để pt ban đầu có 4 nghiệm pb thì $(*)$ phải có 2 nghiệm dương phân biệt
Mà theo định lý Viete, nếu $(*)$ có 2 nghiệm pb $a_1,a_2$ thì:\(a_1+a_2=-1< 0\) nên 2 nghiệm không thể đồng thời cùng dương.
Vậy không tồn tại $m$ để pt ban đầu có 4 nghiệm phân biệt.
ĐKXĐ: \(1\le x\le2\)
\(-x^2+3x-2=2m+x-x^2\)
\(\Rightarrow x=m+1\)
\(\Rightarrow1\le m+1\le2\)
\(\Rightarrow0\le m\le1\)
1)Dat t=\(\sqrt{4x-x^2}\)\(\Rightarrow Pt\Leftrightarrow t^2+2t+1=m+1\ge0\Rightarrow m\ge-1\)
Theo dinh li Viet thi \(\left\{{}\begin{matrix}t_1+t_2=-2\\t_1t_2=-m\end{matrix}\right.\Rightarrow-m\le0\Leftrightarrow m\ge0}\)
Dat \(t=\sqrt{x^2+4x+5}\left(t\ge1\right)\)\(\Rightarrow Pt\Leftrightarrow t^2+t+m-2=0\)
DK:\(\Delta=1-4\left(m-2\right)=9-4m\ge0\Leftrightarrow m\le\dfrac{9}{4}\)
Pt co nghiem la \(t=\dfrac{-1-\sqrt{\Delta}}{2}\left(loai\right),t=\dfrac{-1+\sqrt{\Delta}}{2}\)
Vi \(t\ge1\)\(\Rightarrow\sqrt{\Delta}\ge3\Leftrightarrow9-4m\ge9\Leftrightarrow m\le0\)
\(5\ge\left|x\right|=\left|\sqrt{\dfrac{-1+\sqrt{9-4m}}{2}}\right|=\sqrt{\dfrac{-1+\sqrt{9-4m}}{2}}\Leftrightarrow\sqrt{9-4m}\le51\Leftrightarrow m\ge-648\)Vay \(-648\le m\le0\)
Lời giải:
ĐK:
$1\leq x\leq 2$
$2m+x+x^2\geq 0$
PT $Leftrightarrow -x^2+3x-2=2m+x+x^2$
$\Leftrightarrow m=-x^2+x-1$
Để PT có nghiệm thì $\min (-x^2+x-1)\leq m\leq max (-x^2+x-1)$ với $1\leq x\leq 2$
Với $1\leq x\leq 2$ dễ thấy:
$(-x^2+x-1)_{\max}=-1$ tại $x=1$
$(-x^2+x-1)_{\min}=-3$ tại $x=2$
Do đó: $-3\leq m\leq -1$
a/ \(\Delta=\left(2m+3\right)^2-4\left(m-5\right)=4m^2+8m+4+25\)
\(=4\left(m+1\right)^2+25>0\) \(\forall m\)
Phương trình luôn có 2 nghiệm pb
b/ Theo định lý Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m+3\\x_1x_2=m-5\end{matrix}\right.\)
Ta có: \(\left\{{}\begin{matrix}\frac{1}{x_1}+\frac{1}{x_2}=\frac{x_1+x_2}{x_1x_2}=\frac{2m+3}{m-5}\\\frac{1}{x_1}.\frac{1}{x_2}=\frac{1}{x_1x_2}=\frac{1}{m-5}\end{matrix}\right.\) với \(m\ne5\)
Theo định lý Viet đảo, \(\frac{1}{x_1};\frac{1}{x_2}\) là nghiệm của:
\(x^2-\frac{2m+3}{m-5}x+\frac{1}{m-5}=0\Leftrightarrow\left(m-5\right)x^2-\left(2m+3\right)x+1=0\)
\(\Leftrightarrow x^2+1+3\sqrt{x^2+1}+2m-1=0\) (1)
Đặt \(\sqrt{x^2+1}=t\Rightarrow t\ge1\)
Phương trình trở thành: \(t^2+3t+2m-1=0\) (2)
Để (1) có nghiệm khi và chỉ khi (2) có ít nhất 1 nghiệm thỏa mãn \(t\ge1\)
\(\left(2\right)\Leftrightarrow t^2+3t-1=-2m\)
Xét \(f\left(t\right)=t^2+3t-1\) có đồ thị như dưới với \(f\left(1\right)=3\):
Để pt có ít nhất 1 nghiệm \(t\ge1\Leftrightarrow-2m\ge3\Rightarrow m\le-\frac{3}{2}\)