Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt biểu thức n3 – n2– 7n + 10 bằng A
A= n3 – 2n2 + n2 – 2n – 5n +10
A= (n – 2)(n2 + n – 5).
Để n3-n2-7n+10 là số nguyên tố thì
* n = 3 => A = 7.
* n = 2 =>A = 0 (loại).
Vậy n = 3 là giá trị cần tìm.
Với n = 0, ta có \(A=3^n+6=3^0+6=7\) là một số nguyên tố.
Với \(n>0\), ta có \(A=3^n+6=3\left(3^{n-1}+2\right)\)
Ta thấy A 3 0 mà A chia hết cho 3 nên A không là số nguyên tố.
Vậy ta tìm được duy nhất giá trị n = 0 thỏa mãn điều kiện đề bài.
với n=0 thì ta có 3^n+6 =3^0+6=1+6=7 là số nguyên tố
với n khác 0 thì ta có 3^n chia hết cho 3;6 chia hết cho 3
=>3^n+6 chia hết cho 3
3^n+6 > 3
số 3^n+6 là hợp số vì ngoài ước 1 và chính nó còn có ước là 3
=>với n=0 thì 3^n+6 là số nguyên tó
tick nhé
Với n=0 => 3n + 9n + 36 = 37 là số nguyên tố
Với n>0 => 3n chia hết chi 3, 9n chia hết cho 3, 36 chia hết chi 3 mà 3n + 9n + 36 > 3 nên 3n + 9n + 36 là hợp số
Vậy n=0
- Nếu n = 0 thì 3n + 60 = 1 + 60 = 61 là số nguyên tố, chọn
- Nếu n > 1 thì 3n + 60 chia hết cho 3 (vì 3n và 60 đều chia hết cho 3) và lớn hơn 3 nên là hợp số, loại
Vậy n = 0 thỏa mãn