K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
LV
0
28 tháng 7 2015
a) 5x2y4z6 \(\ge\) 0 vì mỗi thừa số đều lớn hơn hoặc bằng 0.
b) Khi x3y2 > x2y3 thì B luôn dương
SN
1
NN
25 tháng 3 2020
A + B = (2x^2 y^2 - 4x^3 + 7xy - 18) + (x^3y + x^2y^2 - 15xy + 1)
= 2x^2 y^2 - 4x^3 + 7xy - 18 + x^3y + x^2y^2- 15xy + 1
= (2x^2 y2 + x^2y^2) - 4x^3 + x^3y + (7xy – 15xy) + ( -18 + 1)
= 3x^2 y2 - 4x^3 + x^3y – 8xy – 17
HP
2
29 tháng 2 2016
+x-x=0 (loại x)
x^ 8>= 0 và x^2 >=0 (với mọi x) => x^8-x^2+1 >=1 (với mọi x thuộc R) -> đpcm
29 tháng 2 2016
+x-x=0 (loại x)
x^ 8>= 0 và x^2 >=0 (với mọi x) => x^8-x^2+1 >=1 (với mọi x thuộc R) -> đpcm
CH
2
28 tháng 6 2016
Đặt A=\(\left(a+\frac{1}{a}\right)x^2y^6=\frac{a^2+1}{a}\cdot x^2y^6\)
Ta thấy \(a^2+1>0;x^2y^6\ge0\) => Để A <0 thì a <0.
x^2-xy+y^2
=x^2-2*x*1/2y+1/4y^2+3/4y^2
=(x-1/2y)^2+3/4y^2>0 với mọi x,y thỏa mãn \(\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)