K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 2 2016

+x-x=0 (loại x)

x^ 8>= 0 và x^2 >=0 (với mọi x) => x^8-x^2+1 >=1 (với mọi x thuộc R) -> đpcm

29 tháng 2 2016

+x-x=0 (loại x)

x^ 8>= 0 và x^2 >=0 (với mọi x) => x^8-x^2+1 >=1 (với mọi x thuộc R) -> đpcm

21 tháng 2 2017

\(x^2+x+3=x^2+2.\frac{1}{2}.x+\frac{1}{4}+\frac{11}{4}=\left(x+\frac{1}{2}\right)^2+\frac{11}{4}\ge\frac{11}{4}>0\) luôn dương với mọi x

------------------

\(-2x^2+3x-8=2\left(-x^2+\frac{3}{2}x-4\right)=2\left[-x^2+2.\frac{3}{4}.x-\frac{9}{16}-\frac{55}{16}\right]=2\left[-\left(x-\frac{3}{4}\right)^2-\frac{55}{16}\right]\)

\(=2\left[-\left(x-\frac{3}{4}\right)^2-\frac{55}{16}\right]\le-\frac{55}{15}< 0\) luôn âm với mọi x

24 tháng 6 2020

A(x) = 5x3 + 4x2 + 7 - 5x3 + x2 - 2

        = 5x2 + 5

Ta có : \(x^2\ge0\forall x\Rightarrow5x^2\ge0\Rightarrow5x^2+5\ge5>0\forall x\)

=> A(x) luôn dương với mọi x

B(x) = -5x2 + 3x + 7 + 4x2 - 3x - 9

        = -x2 - 2

Ta có : \(x^2\ge0\forall x\Rightarrow-x^2\le0\Rightarrow-x^2-2\le-2< 0\forall x\)

=> B(x) luôn âm với mọi x 

24 tháng 6 2020

\(A\left(x\right)=\left(5x^3-5x^3\right)+\left(4x^2+x^2\right)+\left(7-2\right)=5x^2+5>0\)

\(B\left(x\right)=\left(-5x^2+4x^2\right)+\left(3x-3x\right)+\left(7-9\right)=-x^2-2< 0\)

14 tháng 12 2017

ta có hàm số y = f(x) = 3x2 + 5

vì x2 \(\ge\)\(\forall\)\(\Rightarrow\)3x2 + 5 \(\ge\)5 hay y \(\ge\)5

Vậy với mọi giá trị của x thì hàm số đã cho luôn nhận giá trị dương

Vì x2>0 ( với mọi x )  nên 3x2+5 > 0

Vậy f(x) = 3x2 + 5 luôn nhận giá trị dương với mọi giá trị x ( đpcm ).

  XONG RỒI ĐÓ...

31 tháng 3 2019

đặt A= 0,7x^4+0,2^2-5-0,3x^4-0,2x^2+8

        =0,4x^4+3

        vì x^4 luôn dương với mọi x

suy ra biểu thức A luôn dương với mọi giá trị của x (đpcm)