K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 2 2019

cho S=1-3+32-33+...+398-399                                                                                                                                       

a. Chứng minh: S chia hêt cho 20

b. Rút gọn S, từ đó suy ra 3100 chia 4 dư 1

chịu

30 tháng 6 2019

      ĐK :\(\hept{\begin{cases}x>=0\\x\ne1\end{cases}}\)

Ta có: \(A=\left[\frac{1}{\sqrt{x}+1}-\frac{2\left(x-1\right)}{\sqrt{x}\left(x-1\right)+x-1}\right]:\left[\frac{\sqrt{x}+1}{x-1}-\frac{2}{x-1}\right]\)

          

23 tháng 8 2015

\(=\left(\frac{2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+1\right)}-\frac{1}{\sqrt{x}-1}\right).\left(\frac{x+1}{x+1+\sqrt{x}}\right)\)

\(=\frac{2\sqrt{x}-x-1}{\left(\sqrt{x}-1\right)\left(x+1\right)}.\frac{x+1}{x+\sqrt{x}+1}=\frac{-\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)}.\frac{1}{x+\sqrt{x}+1}=\frac{-\left(\sqrt{x}-1\right)}{x+\sqrt{x}+1}\)

12 tháng 9 2021

sao biểu thức khi rút gọn xấu vậy bạn ? đề có sai khum :vv, thế tìm x dài lắm bạn ạ 

a, Với x > 0 ; \(x\ne1\)

\(M=\left(\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{\sqrt{x}}{\sqrt{x}+1}\right):\left(\frac{2}{x}-\frac{2-x}{x\sqrt{x}-x}\right)\)

\(=\left(\frac{x+\sqrt{x}+x-\sqrt{x}}{x-1}\right):\left(\frac{2\sqrt{x}-2-2+x}{x\left(\sqrt{x}-1\right)}\right)\)

\(=\left(\frac{2x}{x-1}\right):\left(\frac{x+2\sqrt{x}-4}{x\left(\sqrt{x}-1\right)}\right)=\frac{2x^2}{\left(\sqrt{x}+1\right)\left(x+2\sqrt{x}-4\right)}\)

27 tháng 8 2019

Dat \(a=\sqrt[3]{65+x},b=\sqrt[3]{65-x}\)

Bien doi PT thanh \(a^2+4b^2=5ab\)

\(\Leftrightarrow a^2-5ab+4b^2=0\)

\(\Leftrightarrow\left(a^2-ab\right)-\left(4ab-4b^2\right)=0\)

\(\Leftrightarrow a\left(a-b\right)-4b\left(a-b\right)=0\)

\(\Leftrightarrow\left(a-b\right)\left(a-4b\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=b\left(1\right)\\a=4b\left(2\right)\end{cases}}\)

\(\left(1\right)\Leftrightarrow\sqrt[3]{65+x}=\sqrt[3]{65-x}\)

\(\Leftrightarrow65+x=65-x\)

\(\Leftrightarrow x=0\left(n\right)\)

\(\left(2\right)\Leftrightarrow\sqrt[3]{65+x}=4\sqrt[3]{65-x}\)

\(\Leftrightarrow65+x=64.65-64x\)

\(\Leftrightarrow65x=64.65-65\)

\(\Leftrightarrow x=63\left(n\right)\)

Vay nghiem cua PT la \(x=0,x=63\)

30 tháng 8 2018

a)\(-\frac{2}{\sqrt{1-3x}}\text{có nghĩa }\Leftrightarrow1-3x>0\)

\(\Leftrightarrow-3x>-1\Leftrightarrow x< 1\)

b)\(\sqrt{\frac{-5}{x^2+6}}\text{có nghĩa }\Leftrightarrow\frac{-5}{x^2+6}\ge0;x^2+6\ne0\)

\(\Leftrightarrow x^2+6< 0\Leftrightarrow x^2< -6\left(\text{vô lí }\right)\)

\(x\in\varnothing\)

\(\sqrt{x+5}+\frac{1}{x+5}\text{có nghĩa }\Leftrightarrow x+5>0\)

\(\Leftrightarrow x>-5\)

\(\sqrt{\left(x-1\right)\left(x-2\right)}\text{có nghĩa }\Leftrightarrow\left(x-1\right)\left(x-2\right)\ge0\)

TH1: \(\left(x-1\right)\ge0\text{ và }\left(x-2\right)\ge0\)

\(\Rightarrow x\ge2\)

TH2: \(\left(x-1\right)\le0\text{ và }\left(x-2\right)\le0\)

\(\Rightarrow x\le1\)

22 tháng 7 2019

#)Giải :

\(P=\left(\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{1}{x-\sqrt{x}}\right)\div\left(\frac{1}{\sqrt{x}+1}+\frac{2}{x-1}\right)\)

\(P=\left(\frac{x}{\sqrt{x}\left(\sqrt{x}-1\right)}-\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right)\div\left(\frac{\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\frac{2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\)

\(P=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\div\frac{\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}=\frac{\sqrt{x}+1}{\sqrt{x}}\div\frac{1}{\sqrt{x}-1}=\frac{x-1}{\sqrt{x}}\)