K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 1 2022

Gọi bán kính hình tròn tâm  \(A\) và \(B\) lần lượt là \(x;y\left(m\right),\left(0< y< x< 3\right)\)

Vì 2 đường tròn tiếp xúc ngoài với nhau nên \(x+u=AB=3\left(m\right)\left(1\right)\)

Diện tích của hai vườn hoa hình tròn tâm  \(A\) và \(B\) lần lượt là :,\(\text{π}x^2\left(m^2\right);\text{π}y^2\left(m^2\right)\)

Lại có diện tích bồn hoa bằng tổng diện tích của hai hình tròn bằng \(4,68\text{π}\left(m^2\right)\) nên :

\(\text{π}.x^2+\text{π}.y^2=4,68\text{π}\left(m^2\right)\Rightarrow x^2+y^2=4,68\left(2\right)\)

Từ (1) và (2) ta có hệ phương trình: 

\(\left\{{}\begin{matrix}x+y=3\\x^2+y^2=4,68\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=3-y\\\left(3-y\right)^2+y^2=4,68\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=3-y\\2y^2+6y+4,32=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=3-y\\\left(9y-5\right)\left(6y-5\right)=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=3-y\\\left[{}\begin{matrix}x=1,8\\y=1,2\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=1,8\\y=1,2\end{matrix}\right.\\\left\{{}\begin{matrix}x=1,2\\y=1,8\end{matrix}\right.\end{matrix}\right.\)

Vậy bán kính của hai khu vường hình tròn tâm A và B lần lượt là 1,2 m và 1,8 m

 

2 tháng 12 2018

a,Vì BAC = 90 nên CAO'+BAO=90

O'A=OC nên tam giác O'CA cân

Ta có CO'A=180-2*CAO'

tuong tu BOA=180-2*BAO

CO'A+BOA=180

nen o'c //ob ( trong cung phia)

b,tam giác IBO có CO' //OB

IC/IB=O'C/OB = 1/3 nên IC/(IC+4)=1/3

Từ đó bạn tư làm tiếp nha!!!!!

26 tháng 9 2017

không biết

a:

I nằm giữa O và A

=>OI+IA=OA

=>OI=OA-AI

=R-R'

=>(O) với (I) tiếp xúc nhau tại A

b: ΔIAD cân tại I

=>góc IAD=góc IDA

=>góc IDA=góc OAC

ΔOAC cân tại O

=>góc OAC=góc OCA

=>góc IDA=góc OCA
mà hai góc này đồng vị

nên ID//OC

c: Xét (I) có

ΔADO nội tiếp

AO là đường kính

=>ΔADO vuông tại D

Xét (O) có

ΔACB nội tiếp

AB là đường kính

Do đó; ΔACB vuông tại C

Xét ΔACB vuông tại C có cos CAB=AC/AB=1/2*căn 3

=>góc CAB=30 độ

CB=căn AB^2-AC^2=R/2

\(S_{CAB}=\dfrac{1}{2}\cdot CA\cdot CB=\dfrac{1}{2}\cdot\dfrac{R\sqrt{3}}{2}\cdot\dfrac{1}{2}R=\dfrac{R^2\sqrt{3}}{8}\)

Xét ΔADO vuông tại D và ΔACB vuông tại C có

góc DAO chung

Do đó: ΔADO đồng dạng với ΔACB

=>\(\dfrac{S_{ADO}}{S_{ACB}}=\left(\dfrac{AO}{AB}\right)^2=\left(\dfrac{1}{4}\right)\)

=>\(S_{ODCB}=\dfrac{3}{4}\cdot S_{ACB}=\dfrac{3}{4}\cdot\dfrac{R^2\sqrt{3}}{8}=\dfrac{3\cdot\sqrt{3}\cdot R^2}{32}\)