Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1 .
A = 13 + 23 + 33 + ... + 1003
= 1 .1.1 + 2.2.2 + 3.3.3 + ... + 100.100.100
= ( 1 + 2 + 3 + .... 100 ) + ( 1 + 2 + 3 + ... + 100 ) + ( 1 + 2 + 3 + ... + 100 )
= ( 1 + 2 + 3 + .... + 100 )3
Do đó A \(⋮\)1 + 2 + 3 + ... + 100
Câu 2 :
+, Ta có : \(\left(2,125\right)=1\Rightarrow2^{100}\equiv1\left(mod125\right)\)
Do đó 2100 có thể có tận cùng là : 001, 251 ,376, 501, 626 , 751 ( 1)
+, Lại có : \(2^4\equiv0\left(mod8\right)\Rightarrow2^{100}\equiv0\left(mod8\right)\)
Do đó 2100 có 3 chữ số tận cùng chia hết cho 8 ( 2)
Từ (1) và (2) => 2100 có 3 chữ số tận cùng là : 376
Mà \(376\equiv1\left(mod125\right)\)
=> 2100 chia 125 dư 1
Vậy 2100 chia 125 có số dư là 1
Hok tốt
# owe
Ta có:
\(A=-1^2+2^2-3^2+4^2-...-\left(n-1\right)^2+n^2\) (đã sửa đề)
\(A=\left(2^2-1^2\right)+\left(4^2-3^2\right)+...+\left[n^2-\left(n-1\right)^2\right]\)
\(A=\left(2-1\right)\left(2+1\right)+\left(4-3\right)\left(4+3\right)+...+\left(n-n+1\right)\left(n+n-1\right)\)
\(A=1+2+3+4+...+\left(n-1\right)+n\)
\(A=\frac{\left(n+1\right)\left[\left(n-1\right)\div1+1\right]}{2}=\frac{n\left(n+1\right)}{2}\)
xin lỗi, nhưng bạn có thể giải đề này hộ mình được ko?
sao bạn phải sửa đề vậy?
a) \(2\left(x-1\right)^2+\left(x+3\right)^2=3\left(x-2\right)\left(x+1\right)\)
\(\Leftrightarrow2x^2-4x+2+x^2+6x+9=3x^2-3x-6\)
\(\Leftrightarrow5x=-17\)
\(\Rightarrow x=-\frac{17}{5}\)
b) \(\left(x+2\right)^2-2\left(x-3\right)=\left(x+1\right)^2\)
\(\Leftrightarrow x^2+4x+4-2x+6=x^2+2x+1\)
\(\Leftrightarrow10=1\)
=> vô nghiệm
c) \(\left(x-1\right)^2+\left(x-2\right)^2=2\left(x+4\right)^2-\left(22x+27\right)\)
\(\Leftrightarrow x^2-2x+1+x^2-4x+4=2x^2+8x+8-22x-27\)
\(\Leftrightarrow8x=-24\)
\(\Rightarrow x=-3\)
a) 2( x - 1 )2 + ( x + 3 )2 = 3( x - 2 )( x + 1 )
<=> 2( x2 - 2x + 1 ) + x2 + 6x + 9 = 3( x2 - x - 2 )
<=> 2x2 - 4x + 2 + x2 + 6x + 9 = 3x2 - 3x - 6
<=> 2x2 - 4x + x2 + 6x - 3x2 + 3x = -6 - 2 - 9
<=> 5x = -17
<=> x = -17/5
b) ( x + 2 )2 - 2( x - 3 ) = ( x + 1 )2
<=> x2 + 4x + 4 - 2x + 6 = x2 + 2x + 1
<=> x2 + 4x - 2x - x2 - 2x = 1 - 4 - 6
<=> 0x = -9 ( vô lí )
Vậy phương trình vô nghiệm
c) ( x - 1 )2 + ( x - 2 )2 = 2( x + 4 )2 - ( 22x + 27 )
<=> x2 - 2x + 1 + x2 - 4x + 4 = 2( x2 + 8x + 16 ) - 22x - 27
<=> 2x2 - 6x + 5 = 2x2 + 16x + 32 - 22x - 27
<=> 2x2 - 6x - 2x2 - 16x + 22x = 32 - 27 - 5
<=> 0x = 0 ( đúng ∀ x ∈ R )
Vậy phương trình nghiệm đúng ∀ x ∈ R
1/3^2+1/5^2+1/7^2+...+1/(2n+1)^2 < 1/1.3+1/3.5+1/5.7+...+1/(2n-1)(2n+1)
= 1/2(1-1/3+1/3-1/5+1/5-1/7+...+1/(2n-1)-1/(2n+1)
= 1/2(1-1/(2n+1))
= 1/2 . 2n/(2n+1)
= 2n/2(2n+1)
Ta có (a + b + c)2 \(\ge0\forall a;b;c\inℝ\)
=> a2 + b2 + c2 + 2ab + 2bc + 2ca \(\ge\)0
=> a2 + b2 + c2 \(\ge\)0 - (2ab + 2bc + 2ca)
=> a2 + b2 + c2 \(\le\)2ab + 2bc + 2ca
=> a2 + b2 + c2 \(\le\)2(ab + bc + ca)
Dấu "=" xảy ra <=> a + b + c = 0
Xí bài 2 ý a) trước :>
4x2 + 2y2 + 2z2 - 4xy - 4xz + 2yz - 6y - 10z + 34 = 0
<=> ( 4x2 - 4xy + y2 - 4xz + 2yz + z2 ) + ( y2 - 6y + 9 ) + ( z2 - 10z + 25 ) = 0
<=> [ ( 4x2 - 4xy + y2 ) - 2( 2x - y )z + z2 ] + ( y - 3 )2 + ( z - 5 )2 = 0
<=> [ ( 2x - y )2 - 2( 2x - y )z + z2 ] + ( y - 3 )2 + ( z - 5 )2 = 0
<=> ( 2x - y - z )2 + ( y - 3 )2 + ( z - 5 )2 = 0
Ta có : \(\hept{\begin{cases}\left(2x-y-z\right)^2\\\left(y-3\right)^2\\\left(z-5\right)^2\end{cases}}\ge0\forall x,y,z\Rightarrow\left(2x-y-z\right)^2+\left(y-3\right)^2+\left(z-5\right)^2\ge0\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}2x-y-z=0\\y-3=0\\z-5=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4\\y=3\\z=5\end{cases}}\)
Thế vào T ta được :
\(T=\left(4-4\right)^{2014}+\left(3-4\right)^{2014}+\left(5-4\right)^{2014}\)
\(T=0+1+1=2\)
mới lớp 7 sao đăng là lớp 8