K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 7 2020

1/3^2+1/5^2+1/7^2+...+1/(2n+1)^2 < 1/1.3+1/3.5+1/5.7+...+1/(2n-1)(2n+1)
= 1/2(1-1/3+1/3-1/5+1/5-1/7+...+1/(2n-1)-1/(2n+1)
= 1/2(1-1/(2n+1))
= 1/2 . 2n/(2n+1)
= 2n/2(2n+1)

28 tháng 7 2020

huhu, bạn ơi đề bài bảo chứng minh <1/4 mà bạn

30 tháng 1 2020

Câu 1 .

A = 13 + 23 + 33 + ... + 1003 

   = 1 .1.1 + 2.2.2 + 3.3.3 + ... + 100.100.100

   = ( 1 + 2 + 3 + .... 100 ) + ( 1 + 2 + 3 + ... + 100 ) + ( 1 + 2 + 3 + ... + 100 )

   = ( 1 + 2 + 3 + .... + 100 )3

Do đó A \(⋮\)1 + 2 + 3 + ... + 100

Câu 2 : 

+, Ta có : \(\left(2,125\right)=1\Rightarrow2^{100}\equiv1\left(mod125\right)\)

Do đó 2100  có thể có tận cùng là : 001, 251 ,376, 501, 626 , 751             ( 1) 

+, Lại có : \(2^4\equiv0\left(mod8\right)\Rightarrow2^{100}\equiv0\left(mod8\right)\)

Do đó 2100 có 3 chữ số tận cùng chia hết cho 8            ( 2)

Từ (1) và (2) => 2100 có 3 chữ số tận cùng là : 376 

Mà \(376\equiv1\left(mod125\right)\)

=> 2100 chia 125 dư 1

Vậy 2100 chia 125 có số dư là 1

Hok tốt

# owe

30 tháng 1 2020

Câu 1 hình như sai phải ko bạn, sao từ phép nhân sang phép cộng dễ thế?

28 tháng 7 2020


\(A=\left(1+\frac{1}{1.3}\right)\left(1+\frac{1}{2.4}\right)\left(1+\frac{1}{3.5}\right)...\left(1+\frac{1}{n\left(n+2\right)}\right)\)

\(=\frac{1.3+1}{1.3}.\frac{2.4+1}{2.4}.\frac{3.5+1}{3.5}....\frac{n\left(n+2\right)+1}{n\left(n+2\right)}\)

\(=\frac{\left(2-1\right)\left(2+1\right)+1}{1.3}.\frac{\left(3-1\right)\left(3+1\right)+1}{2.4}.\frac{\left(4-1\right)\left(4+1\right)+1}{3.5}....\frac{\left(n+1-1\right).\left(n+1+1\right)+1}{n.\left(n+2\right)}\)

\(=\frac{2^2-1^2+1}{1.3}.\frac{3^2-1^2+1}{2.4}.\frac{4^2-1^2+1}{3.5}....\frac{\left(n+1\right)^2-1^2+1}{n\left(n+2\right)}\)

\(=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}...\frac{\left(n+1\right)^2}{n\left(n+2\right)}=\frac{2.2.3.3.4.4....\left(n+1\right)\left(n+1\right)}{1.3.2.4.3.5....n.\left(n+2\right)}=\frac{\left[2.3.4....\left(n+1\right)\right]\left[\left(2.3.4...\left(n+1\right)\right)\right]}{\left(1.2.3...n\right).\left[3.4.5...\left(n+2\right)\right]}\)

\(=\frac{\left(n+1\right).2}{n+2}< \frac{2.\left(n+2\right)}{n+2}=2\)

=> A < 2

24 tháng 7 2019

Bài 2 phải là chứng minh chia hết cho 5 chứ nhỉ 

24 tháng 7 2019

Bài 2:

\(n^5-n\)

\(=n\left(n^4-1\right)\)

\(=n\left(n^2-1\right)\left(n^2+1\right)\)

\(=n\left(n^2-1\right)\left(n^2-4+5\right)\)

\(=n\left(n^2-1\right)\left(n^2-4\right)+5n\left(n^2-1\right)\)

\(=\left(n^2-1\right)\left[n\left(n^2-4\right)+5n\right]\)

\(=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)+5n\left(n^2-1\right)⋮5\)

16 tháng 8 2020

( 2x + 1 )2 - 4x( x - 1 ) = 5

<=> 4x2 + 4x + 1 - 4x2 + 4x = 5

<=> 8x + 1 = 5

<=> 8x = 4

<=> x = 4/8 = 1/2

16 tháng 8 2020

Bài làm

\(\left(2x+1\right)^2-4x\left(x-1\right)=5\Leftrightarrow4x^2+4x+1-4x^2+4x=5\)

\(\Leftrightarrow8x+1=5\Leftrightarrow x=\frac{1}{2}\)

25 tháng 12 2015

mới lớp 7 sao đăng là lớp 8

16 tháng 8 2020

a) x2 + 2x + 2 

= ( x2 + 2x + 1 ) + 1

= ( x + 1 )2 + 1 ≥ 1 > 0 ∀ x ( đpcm )

b) x2 - 6x + 10 

= ( x2 - 6x + 9 ) + 1

= ( x - 3 )2 + 1 ≥ 1 > 0 ∀ x ( đpcm )

c) \(x^2+x+\frac{1}{4}\)

\(=x^2+2\cdot\frac{1}{2}\cdot x+\left(\frac{1}{2}\right)^2\)

\(=\left(x+\frac{1}{2}\right)^2\ge0\forall x\)( Min là 0 nên chưa kết luận vội :)) )

6 tháng 9 2020

a) \(2\left(x-1\right)^2+\left(x+3\right)^2=3\left(x-2\right)\left(x+1\right)\)

\(\Leftrightarrow2x^2-4x+2+x^2+6x+9=3x^2-3x-6\)

\(\Leftrightarrow5x=-17\)

\(\Rightarrow x=-\frac{17}{5}\)

b) \(\left(x+2\right)^2-2\left(x-3\right)=\left(x+1\right)^2\)

\(\Leftrightarrow x^2+4x+4-2x+6=x^2+2x+1\)

\(\Leftrightarrow10=1\)

=> vô nghiệm 

c) \(\left(x-1\right)^2+\left(x-2\right)^2=2\left(x+4\right)^2-\left(22x+27\right)\)

\(\Leftrightarrow x^2-2x+1+x^2-4x+4=2x^2+8x+8-22x-27\)

\(\Leftrightarrow8x=-24\)

\(\Rightarrow x=-3\)

6 tháng 9 2020

a) 2( x - 1 )2 + ( x + 3 )2 = 3( x - 2 )( x + 1 )

<=> 2( x2 - 2x + 1 ) + x2 + 6x + 9 = 3( x2 - x - 2 )

<=> 2x2 - 4x + 2 + x2 + 6x + 9 = 3x2 - 3x - 6

<=> 2x2 - 4x + x2 + 6x - 3x2 + 3x = -6 - 2 - 9

<=> 5x = -17

<=> x = -17/5

b) ( x + 2 )2 - 2( x - 3 ) = ( x + 1 )2

<=> x2 + 4x + 4 - 2x + 6 = x2 + 2x + 1

<=> x2 + 4x - 2x - x2 - 2x = 1 - 4 - 6

<=> 0x = -9 ( vô lí )

Vậy phương trình vô nghiệm

c) ( x - 1 )2 + ( x - 2 )2 = 2( x + 4 )2 - ( 22x + 27 )

<=> x2 - 2x + 1 + x2 - 4x + 4 = 2( x2 + 8x + 16 ) - 22x - 27

<=> 2x2 - 6x + 5 = 2x2 + 16x + 32 - 22x - 27

<=> 2x2 - 6x - 2x2 - 16x + 22x = 32 - 27 - 5

<=> 0x = 0 ( đúng ∀ x ∈ R )

Vậy phương trình nghiệm đúng ∀ x ∈ R