Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\frac{2}{5}.\frac{1}{3}-\frac{2}{15}:\frac{1}{5}+\frac{3}{5}.\frac{1}{3}\)
\(=\frac{1}{3}.\left(\frac{2}{5}+\frac{3}{5}\right)-\frac{2}{15}.5\)
\(=\frac{1}{3}.1-\frac{2}{3}\)
\(=\frac{1}{3}-\frac{2}{3}\)
\(=\frac{-1}{3}\)
b, \(\left(6-2\frac{4}{5}\right).3\frac{1}{8}+1\frac{3}{8}:\frac{1}{4}\)
\(=\left(6-\frac{14}{5}\right).\frac{25}{8}+\frac{11}{8}.4\)
\(=\frac{16}{5}.\frac{25}{8}+\frac{11}{2}\)
\(=10+\frac{11}{2}\)
\(=\frac{31}{2}\)
1/3×(3/5+2/5)-2/15×1/5
1/3×1-2/15×1/5
1/3-2/15×1/5
1/3-2/75
25/75-2/75
23/75
(6-14/5)×25/8-11/8:4/1
16/5×25/8-11/8:4/1
10/1-11/8:4/1
10/1-11/8×1/4
10/1-11/32
320/32-11/32
309/32
a. 3/5 . 15/7 - 15/7 . 8/5
= 15/7(3/5-8/5)
=15/7. -\(\frac{1}{1}\)
=22/7
b. 4/5 . 1 3/7 + 4/5 . 4/7
=4/5(13/7+4/7)
=4/5.17/7
= 68/35
\(A=1+6+6^2+...+6^{100}\)
\(6A=6+6^2+6^3+...+6^{101}\)
\(6A-A=\left(6+6^2+...+6^{101}\right)-\left(1+6+...+6^{100}\right)\)
\(5A=6^{101}-1\)
\(A=\frac{6^{101}-1}{5}\)
Hoàn toàn tương tự với các câu b) c)
\(A=1+6+6^2+6^3+...+6^{100}\)
\(6A=6+6^2+6^3+6^4+...+6^{101}\)
\(6A-A=\left(6+6^2+6^3+6^4+...+6^{101}\right)-\left(1+6+6^2+...+6^{100}\right)\)
\(5A=6^{101}-1\)
\(A=\frac{6^{101}-1}{5}\)
= ( -1 + 1) + (-2 + 2 ) + (-3 + 3) + (-4 + 4 ) + (-5 +5) + ( 6+7+1)
= 0 + 0 + 0 + 0 + 0 + 12
= 12
\(A=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^8}\)
=>3A=\(1+\frac{1}{3}+...+\frac{1}{3^7}\)
=>3A-A=\(\left(1+\frac{1}{3}+...+\frac{1}{3^7}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^8}\right)\)
=>2A=\(1-\frac{1}{3^8}=\frac{3^8-1}{3^8}\)
=>A=\(\frac{3^8-1}{3^8}:2=\frac{3^8-1}{2.3^8}\)