K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Dễ mà :vv

Ta có: \(x^2+4y^2-6x+4y+10=0\)

\(\Leftrightarrow\left(x^2-6x+9\right)+\left(4y^2-4y+1\right)=0\)

\(\Leftrightarrow\left(x-3\right)^2+\left(2y-1\right)^2=0\)

Đến đây tự giải...

4 tháng 5 2021

<=> x^2-6x+9+4y^2+4y+1=0

<=> x^2-2.3.x+3^2+(2y)^2+2.2y.1+1=0

<=>(x-3)^2+(2y+1)^2=0

<=> x-3=0 và 2y+1=0

<=> x=3 và y=-1/2

 

3 tháng 12 2018

\(x^2+4y^2-6x+4y+10=0\)

\(x^2-6x+9+\left(4y^2+4y+1\right)=0\)

\(\left(x-3\right)^2+\left(2y+1\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}\left(x-3\right)^2=0\\\left(2y+1\right)^2=0\end{cases}}\)   vì \(0+0=0\)

\(\Rightarrow\hept{\begin{cases}x=3\\y=\frac{-1}{2}\end{cases}}\)  

6 tháng 8 2020

a) \(x^2+4y^2-6x-4y+10=0\)

\(\Leftrightarrow\left(x^2-6x+9\right)+\left(4y^2-4y+1\right)=0\)

\(\Leftrightarrow\left(x-3\right)^2+\left(2y-1\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}x-3=0\\2y-1=0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x=3\\y=\frac{1}{2}\end{cases}}\)

b) \(2x^2+y^2+2xy-10x+25=0\)

\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(x^2-10x+25\right)=0\)

\(\Leftrightarrow\left(x+y\right)^2+\left(x-5\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}x+y=0\\x-5=0\end{cases}\Leftrightarrow}\hept{\begin{cases}y=-5\\x=5\end{cases}}\)

c) \(x^2+2xy+4x-4y-2xy+5=0\)

\(\Leftrightarrow x^2-4x-4y+5=0\)

Xem lại đề câu c).

6 tháng 8 2020

a) x2 + 4y2 - 6x - 4y + 10 = 0

<=> x2 - 6x + 9 + 4y2 - 4y + 1 = 0

<=> ( x - 3 )2 + ( 4y - 1 )2 = 0

<=> \(\hept{\begin{cases}x-3=0\\4y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=\frac{1}{4}\end{cases}}\)

b) 2x2 + y2 + 2xy - 10x + 25 = 0

<=> x2 + 2xy + y2 + x2 - 10x + 25 = 0

<=> ( x + y )2 + ( x - 5 )2 = 0

<=> \(\hept{\begin{cases}x+y=0\\x-5=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=0\\x=5\end{cases}}\Leftrightarrow\hept{\begin{cases}y=-5\\x=5\end{cases}}\)

c) Xem lại đề 

24 tháng 7 2019

         \(10x^2\)  \(+y^2\)  \(+4z^2+6x-4y-4xz+5=0\) 

\(\Leftrightarrow\left(9x^2-6x+1\right)+\left(x^2-2.x.2z+4z^2\right)\) \(+\left(y^2-4y+4\right)=0\)

\(\Leftrightarrow\)\(\left(3x-1\right)^2\)  \(+\left(x-2z\right)^2\) \(+\left(y-2\right)^2=0\)  

Có \(\left(3x-1\right)^2\ge0\forall x\)  

      \(\left(x-2z\right)^2\ge0\forall x,z\) 

       \(\left(y-2\right)^2\) \(\ge0\forall y\) 

\(\Rightarrow\) \(\left(3x-1\right)^2\) \(+\left(x-2z\right)^2+\left(y-2\right)^2\ge0\forall x,y,z\) 

Dấu = xảy ra \(\Leftrightarrow\) \(\hept{\begin{cases}3x-1=0\\x-2z=0\\y-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{3}\\z=\frac{1}{6}\\y=2\end{cases}}\)  

KL 

25 tháng 6 2015

sửa nè

x^2 +4y^2 - 6x +4y + 10 = 0

<=>x2-6x+9+4y2+4y+1=0

<=>(x-3)2+(2y+1)2=0

<=>x-3=0 và 2y+1=0

<=>x=3 và 2y=-1

<=>x=3 và y=-1/2

25 tháng 6 2015

nhầm j

x^2 +4y^2 - 6x +4y + 10 = 0

<=>x2-6x+9+4y2+4y+1=0

<=>(x-3)2+(2y+1)2=0

<=>x-3=0 và 2y-1=0

<=>x=3 và 2y=1

<=>x=3 và y=1/2

Phương trình tương đương (3x)2+2.3x+1+(2y)2−2.2x.2+4=0(3x)2+2.3x+1+(2y)2−2.2x.2+4=0 ⇒(3x+1)2+(2y−2)2=0⇒(3x+1)2+(2y−2)2=0 Do (3x+1)2≥0(3x+1)2≥0 và (2y−2)2≥0(2y−2)2≥0 ∀x,y∀x,y ⇒(3x+1)2+(2y−2)2≥0⇒(3x+1)2+(2y−2)2≥0 Dấu "=" xảy ra ⇔⇔ ⇒{(3x+1)2=0(2y−2)2=0⇒{(3x+1)2=0(2y−2)2=0 ⇒{3x+1=02y−2=0⇒{3x+1=02y−2=0 ⇒⎧⎨⎩x=−13y=1



hok tốt

31 tháng 10 2020

\(9x^2+6x+4y^2-8y+5=0\)

\(\Leftrightarrow9x^2+6x+1+4\left(y^2-2y+1\right)=0\)

\(\Leftrightarrow\left(3x+1\right)^2+4\left(y-1\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}3x+1=0\\y-1=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=-\frac{1}{3}\\y=1\end{cases}}\)

vậy.......

27 tháng 7 2019

\(x^2-2xy+5y^2-4y+1=0\)

=> \(\left(x^2-2xy+y^2\right)+\left(4y^2-4y+1\right)=0\)

=> \(\left(x-y\right)^2+\left(2y-1\right)^2=0\)

Ta có: \(\left(x-y\right)^2\ge0\forall x;y\)

      \(\left(2y-1\right)^2\ge0\forall y\)

=> \(\left(x-y\right)^2+\left(2y-1\right)^2\ge0\forall x;y\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-y=0\\2y-1=0\end{cases}}\) <=> \(\hept{\begin{cases}x=y\\2y=1\end{cases}}\) <=> \(x=y=\frac{1}{2}\)

Vậy x = y = 1/2 (tm)

\(x^2-2xy+5y^2-4y+1=0\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(4y^2-4y+1\right)=0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(2y-1\right)^2=0\)

Mà (x-y)2và (2y-1)2 > 0

\(\Leftrightarrow\hept{\begin{cases}x-y=0\\2y-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=y\\2y=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{1}{2}\end{cases}}}\)

19 tháng 7 2018

x^2+2xy+y^2+y^2-2yz+z^2+y^2+4y+4+6-2x=0

(x+y)^2+(y-z)^2+(y+2)^2+2*(3-x)=0

y+2=0=>y=-2

y-z=0=>z=-2 

x+y=0=>x=2

19 tháng 7 2018

<=>(x2+2xy+y2)+(y2-2yz+z2)+(y2+6y+9)-(2x+2y)+1=0

<=>[(x+y)2-2(x+y)+1]+(y-z)2+(y+3)2=0

<=>(x+y-1)2+(y-z)2+(y+3)2=0

Vì \(\hept{\begin{cases}\left(x+y-1\right)^2\ge0\\\left(y-z\right)^2\ge0\\\left(y+3\right)^2\ge0\end{cases}\Rightarrow\left(x+y-1\right)^2+\left(y-z\right)^2+\left(y+3\right)^2\ge0}\)

\(\Rightarrow\hept{\begin{cases}x+y-1=0\\y-z=0\\y+3=0\end{cases}\Rightarrow\hept{\begin{cases}x+y=1\\y-z=0\\y=-3\end{cases}}\Rightarrow\hept{\begin{cases}x=4\\z=-3\\y=-3\end{cases}}}\)

Vậy x=4,y=z=-3

5 tháng 6 2020

2) \(x^4-x^2+2x+2\)

\(=x^2\left(x-1\right)\left(x+1\right)+2\left(x+1\right)\)

\(=x^2\left(x-1+2\right)\left(x+1\right)\)

\(=x^2\left(x+1\right)^2\)

\(=\left(x^2+x\right)^2\)

Vậy \(x^4-x^2+2x+2\)là số chính phương với mọi số nguyên x