K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 5 2018

2 *x *x - x*y- 3 *y = 3*x

2 *x*x-(x-3)*y=3*x

em hết biết giải rồi chị ơi vì em học lớp 5

12 tháng 7 2019

 Ta có: P = 2(x + y6) - 3(x4 + y4)

 P = 2(x2 + y2)(x4 - x2y2 + y4) - 3x4 - 3y4

P = 2.1.(x4 - x2y2 + y4) - 3x4 - 3y4

P = 2x4 - 2x2y2 + 2y4 - 3x4 - 3y4

P = (2x4 - 3x4) - 2x2y2 + (2y4 - 3y4)

P = -x4 - 2x2y2 - y4

P = -(x4 + 2x2y2 + y4)

P = -(x2 + y2)2

P = -12 = -1

=> Biểu thức P ko phụ thuộc vào x với x2 + y2 = 1

17 tháng 7 2019

\(A=-\left(x^2-2x+1\right)-2\)

\(A=-\left(x-1\right)^2-2\)

Vì \(-\left(x-1\right)^2\le0;\forall x\)

\(\Rightarrow-\left(x-1\right)^2-2\le0-2;\forall x\)

Hay \(A\le-2;\forall x\)

Dấu "=" xảy ra\(\Leftrightarrow\left(x-1\right)^2=0\)

                       \(\Leftrightarrow x=1\)

Vậy MAX A=-2 \(\Leftrightarrow x=1\)

17 tháng 7 2019

\(C=-2x^2+2xy-y^2+2x+4\)

\(C=-x^2+2xy-y^2-x^2+2x-1+5\)

\(C=-\left(x^2-2xy+y^2\right)-\left(x^2-2x+1\right)+5\)

\(C=-\left(x-y\right)^2-\left(x-1\right)^2+5\le5\)

Dấu = xảy ra khi :

    \(\hept{\begin{cases}x-y=0\\x-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=y\\x=1\end{cases}}\Leftrightarrow x=y=1\)

Vậy C max = 5 tại x = y = 1

15 tháng 7 2019

\(B=x^2-x+2=x^2-2.\frac{1}{2}x+\frac{1}{4}+\frac{7}{4}=\left(x-\frac{1}{2}\right)^2+\frac{7}{4}\ge\frac{7}{4}\)

Vậy \(B_{min}=\frac{7}{4}\)\(\Leftrightarrow x=\frac{1}{2}\)

15 tháng 7 2019

\(A=2x^2-3x+6=2\left(x^2-2.\frac{3}{4}x+\frac{9}{16}+\frac{39}{16}\right)\)

\(=2\left[\left(x-\frac{3}{4}\right)^2+\frac{39}{16}\right]\ge\frac{39}{8}\)

Vậy \(A_{min}=\frac{39}{8}\Leftrightarrow x=\frac{3}{4}\)

Tìm giá trị nhỏ nhất :

A = 3x2 - x + 1

GTNN cuả A là \(\frac{1}{6}\)

B = 9x2 - x + 3

     GTNN cuả A là    \(\frac{1}{18}\) 

Study well 

26 tháng 7 2019

\(A=3\left(x^2-2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2\right)+\frac{1}{4}\)

\(=3\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)

Vậy \(Min_A=\frac{1}{4}\)  khi và chỉ khi x=1/2

\(B=9\left(x^2-2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2\right)+\frac{3}{4}\)

=\(9\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Vay \(Min_B=\frac{3}{4}\)khi và chỉ khi x=3/4

21 tháng 7 2019

\(A=3x^2-x+1\)

\(\Leftrightarrow A=3x^2-x+\frac{1}{12}+\frac{11}{12}\)

\(\Leftrightarrow A=\frac{\left(\frac{1}{2}-\frac{x}{2}\right)x^2}{2}+\frac{11}{12}\)

Vì \(\frac{\left(\frac{1}{2}-\frac{x}{2}\right)x^2}{2}\ge0\)nên \(\frac{\left(\frac{1}{2}-\frac{x}{2}\right)x^2}{2}+\frac{11}{12}\ge\frac{11}{12}\)

Vậy \(A_{min}=\frac{11}{12}\Leftrightarrow x=0\)

21 tháng 7 2019

áp dụng bất đẳng thức coossi cho 3 số không âm nha bạn

12 tháng 7 2019

Trả lời

Hình như b viết thiếu đề hay sao ý

Ng ta ko cho 3a^2+3b^2 bằng bao nhiêu ag

12 tháng 7 2019

Ta có

3a^2+3b^2=10ab

3a^2-10ab+3b^2=0

3a^2-9ab-ab+3b^2=0

3a(a-3b)-b(a-3b)=0

(a-3b)(3a-b)=0

=>a-3b=0=>a=3b

=>3a-b=0=>3a=b

thay vào biểu thức

P=a-b/a+b=3b-b/3b+b=2b/4b=1/2

vậy P=1/2

17 tháng 7 2019

A= -(x^2-2x+3)=-(x^2-2x+1+2)=-[(x-1)^2+2]=-(x-1)^2-2

vs mọi x cs:

-(x-1)^2 < 0

=> -(x-1)^2-2 < -2

dấu = xảy ra <=> (x-1)^2=0

                     <=> x-1=0<=>x=1 

vậy GTLN của A=-2 khi x=1