Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) 3n ⋮ 2n - 5
=> 2(3n) - 3(2n - 5) ⋮ 2n - 5
=> 6n - 6n + 15 ⋮ 2n - 5
=> 15 ⋮ 2n - 5
=> 2n-5 ϵ Ư(15)
Ư(15) = {1;-1;3;-3;5;-5;15;-15}
=> n={3;2;4 ;1;5;0;10;-5
Ta có 2n + 5 = 2n - 1 + 6
Vì 2n + 5 \(⋮\)2n - 1
=> 2n - 1 + 6 \(⋮\)2n - 1
<=> 2n - 1 \(⋮\)2n - 1 ; 6 \(⋮\)2n - 1
<=> 6 \(⋮\)2n - 1
<=> 2n - 1 \(\in\)Ư(6)
Mà Ư(6) = {1;2;3;6}
=> 2n - 1\(\in\){1;2;3;6}
Nhưng 2n - 1 là số lẻ nên 2n - 1\(\in\){1;3}
Ta có bảng sau
2n - 1 | 1 | 3 |
n | 1 | 2 |
Vậy n\(\in\){1;2}
Để \(5n+19⋮n+3\)
\(\Rightarrow5n+15+4⋮n+3\)
\(\Rightarrow5\left(n+3\right)+4⋮n+3\)
Vì \(5\left(n+3\right)⋮n+3\Rightarrow4⋮n+3\Rightarrow n+3\inƯ\left(4\right)\Rightarrow n+3\in\left\{1;2;4\right\}\Rightarrow n\in\left\{-2;-1;1\right\}\)
Mà n là só tự nhiên => n = 1
Vậy n = 1
Theo bài ra, ta có
3n +3 chia hết cho n
Mà 3n chia hết cho n
=> 3 chia hết cho n
Do đó: n \(\in\)Ư(3)
=> n \(\in\){ -1; 1; -3; 3}
ta có : 2n-1 chia hết cho 2n-1
2(2n-1) chia hết cho 2n-1
4n-2 chia hết cho 2n-1
áp dụng tính chất : a chia hết cho c
b chia hết cho c
thì a-b chia hết cho c
4n-2-(4n-5) chia hết cho 2n-1
3 chia hết cho 2n-1
2n-1 thuộc ( 1;-1;3;-3)
2n thuộc ( 2;0;4;-2)
n thuộc ( 1;0;2;-1)
Ta có: 1+3+5+7+…+(2n-1)
Dãy trên có số số hạng là:
(2n-1-1):2+1=n(số)
=>1+3+5+7+…+(2n-1)
=[(2n-1)+1].n:2
=2.n.n:2
=n.n
=n2 chia hết cho 5
=>n chia hết cho 5
=>n=5k
Vậy n=5k
Ta có:4n-5=4n+2-7=2(2n+1)-7
Để 4n-5 chia hết cho 2n+1 thì 7 chia hết cho 2n+1
=>2n+1\(\in\)Ư(7)={-7,-1,1,7)
=>2n\(\in\){-8,-2,0,6}
=>n\(\in\){-4,-1,0,3}
2n+21 chia hết cho 5
nên 2n+21EB(5)={0;5;10;15;20;25;30;35;...}
=>2nE{4;9;14;...}
=>nE{2;7;...}
N la cac so co tan cung la 2