Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có 1n2+4n=14(1n−1n+4)1n2+4n=14(1n−1n+4) Khi đó pt tương đương: 14(13−17+17−111+...+1n−1n+4)=5667314(13−17+17−111+...+1n−1n+4)=56673 ⟺13−1n+4=224673=>n=2015
Làm mẫu câu a bài 1. vì các câu còn lại tương tự
n+7 chia hết cho n-5
\(\Rightarrow\left(n+7\right)-\left(n-5\right)⋮n-5\)
\(\Rightarrow12⋮n-5\)
\(\Rightarrow n-5\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
ta có bảng :
n-5 | 1 | -1 | 2 | -2 | 3 | -3 | 4 | -4 | 6 | -6 | 12 | -12 |
n | 6 | 4 | 7 | 3 | 8 | 2 | 9 | 1 | 11 | -1 | 17 | -7 |
vậy \(n\in\left\{6;4;7;3;8;2;9;1;11;-1;17;-7\right\}\)
2. làm mẫu câu a:
(2a+3)(b-3)=-12
=>(2a+3);(b-3)\(\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
TH1:
2a+3=1 ;b-3=-12
2a=-2 =>b=-9
=>a=-1
sau đó em ghép siêu nhiều trường hợp còn lại .
có 12TH tất cả em nhé .
\(\frac{1}{21}+\frac{1}{77}+\frac{1}{165}+...+\frac{1}{n^2+4n}=\frac{56}{673}\)
<=> \(\frac{1}{3.7}+\frac{1}{7.11}+\frac{1}{11.15}+...+\frac{1}{n.\left(n+4\right)}=\frac{56}{673}\)
<=> \(4.\left(\frac{1}{3.7}+\frac{1}{7.11}+\frac{1}{11.15}+...+\frac{1}{n.\left(n+4\right)}\right)=4.\frac{56}{673}\)
<=> \(\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+...+\frac{4}{n\left(n+4\right)}=\frac{224}{673}\)
<=> \(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{n}-\frac{1}{n+4}=\frac{224}{673}\)
<=> \(\frac{1}{3}-\frac{1}{n+4}=\frac{224}{673}\)
<=> \(\frac{n+4-3}{3.\left(n+4\right)}=\frac{224}{673}\Leftrightarrow\frac{n}{3.\left(n+4\right)}=\frac{224}{673}\)
<=> 673n = 224.3(n+4)
<=> 673n = 224.3.n + 224.3.4
<=> 673n = 672n + 2688
<=> 673n - 672n = 2688
<=> n = 2688