Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1023^{1024}=\left(1023^4\right)^{256}=\left(....1\right)^{256}=\left(.....6\right)\)
\(8^{1975}=8^3.8^{1972}=512.\left(8^4\right)^{493}=512.\left(4096\right)^{493}=512.\left(.....6\right)=\left(.....2\right)\)
\(2^{4n-5}=\left(2^4\right)^n:2^5=\left(16\right)^n:32=\left(....6\right):32=\left(....8\right)\)
\(2^{4n+2}+1=\left(2^4\right)^5.2^2+1=\left(16\right)^5.4+1=\left(....6\right).4+1=\left(...4\right)+1=\left(.....5\right)\)
P/s: Hoq chắc ạ :))))
bài 8
c) chứng minh \(\overline{aaa}⋮37\)
ta có: \(aaa=a\cdot111\)
\(=a\cdot37\cdot3⋮37\)
\(\Rightarrow aaa⋮37\)
k mk nha
k mk nha.
#mon
a) 53.(-15)+(-15).47
=53.[(-15)+(-15)].47
=53.(-30).47
=-1590.47
=-74730
1) từ bài toán ta có :
( 12 +22 +...+ 102 =385)
D = 22+42+62+...+202 = 2^2(12 +22 +...+ 102 )
mà 12 +22 +...+ 102 =385
=> D = 4 x 385 = 1540
2) ta có 2^10 = 1024
=> 21+2+3+...+n=210
=> n = 4
\(3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}\)
\(=3^{n+1}\left(3^2+1\right)+2^{n+2}\left(2+1\right)\)
\(=3^{n+1}\cdot10+2^{n+2}\cdot3\)
\(=3^n\cdot3\cdot10+2^{n+1}\cdot2\cdot3\)
\(=3^n\cdot30+2^{n+1}\cdot6\)
\(=6\left(3^n\cdot5+2^{n+1}\right)⋮6\left(đpcm\right)\)
\(~~~HD~~~\)
\(1023^{1024}=\left(1023^4\right)^{256}=\left(...1\right)^{256}=\left(.....1\right)\)