Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\frac{x}{2}=\frac{y}{3}\)=>\(\frac{x}{8}=\frac{y}{12}\)
\(\frac{y}{4}=\frac{z}{5}\)=>\(\frac{y}{12}=\frac{z}{15}\)
=>\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)
=>\(\frac{x}{8}=2\)=>x=16
\(\frac{y}{12}=2\)=>y=24
\(\frac{z}{15}=2\)=>z=30
Vậy x=16 ; y=24 ; z=30
y/4 = z/5 => y = 4z/5
x/2 = y/3 = 4z/15 = (x + y - z)/(2 + 3 - 3,75) = 8
=> x = 16; y = 24; z = 10
A)Dựa vào tính chất của dãy tỉ số bằng nhau:
x/1 = y/2 = z/3 = 4x -3y +2z /4.1 -3.2 +2.3 =36/4 =9
x/1=9 =>x=9.1=9
y/2=9=>y=9.2=18
z/3=9=>z=9.3=27
B)Dựa vào tính chất của dãy tỉ số bằng nhau:
x/3=y/8=z/5=3x+y-2z/3.3+8-2.5=14/7=2
x/3=2=>x=2.3=6
y/8=2=>y=2.8=16
z/5=2=>z=2.5=10
C)Dựa vào tính chất của dãy tỉ số bằng nhau:
x/3=y/8=z/5=2y+3y-z/2.3+3.8-5=50/25=2
x/3=2=>x=2.3=6
y/8=2=>y=2.8=16
z/5=2=>z=2.5=10
A)Dựa vào tính chất của dãy tỉ số bằng nhau:
x/1 = y/2 = z/3 = 4x -3y +2z /4.1 -3.2 +2.3 =36/4 =9
x/1=9 =>x=9.1=9
y/2=9=>y=9.2=18
z/3=9=>z=9.3=27
B)Dựa vào tính chất của dãy tỉ số bằng nhau:
x/3=y/8=z/5=3x+y-2z/3.3+8-2.5=14/7=2
x/3=2=>x=2.3=6
y/8=2=>y=2.8=16
z/5=2=>z=2.5=10
C)Dựa vào tính chất của dãy tỉ số bằng nhau:
x/3=y/8=z/5=2y+3y-z/2.3+3.8-5=50/25=2
x/3=2=>x=2.3=6
y/8=2=>y=2.8=16
z/5=2=>z=2.5=10
\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{8}=\frac{y}{12}\)
\(\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\)
Vậy \(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)
=> x = 16; y = 24; z = 30
\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{8}=\frac{y}{12}\) (1)
\(\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\) (2)
Từ (1) và (2)
=> \(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\) và \(x+y-z=10\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)
\(\frac{x}{8}=2\Rightarrow x=8\times2=16\)
\(\frac{y}{12}=2\Rightarrow y=12\times2=24\)
\(\frac{z}{15}=2\Rightarrow z=2\times15=30\)
a/ x/2 = y/3 = z/5 và x+y+z = -90
áp dụng tính chất của dãy tỉ số bằng nhau, có:
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=\frac{x+y+z}{2+3+5}=\frac{-90}{10}=-9\)
suy ra: \(\frac{x}{2}=-9\Rightarrow x=-9\cdot2=-18\)
\(\frac{y}{3}=-9\Rightarrow y=-9\cdot3=-27\)
\(\frac{z}{5}=-9\Rightarrow z=-9\cdot5=-45\)
a/ x/2 = y/3 = z/5 và x+y+z = -90
áp dụng tính chất của dãy tỉ số bằng nhau, có:
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=\frac{x+y+z}{2+3+5}=\frac{-90}{10}=-9\)
suy ra: \(\frac{x}{2}=-9\Rightarrow x=-9\cdot2=-18\)
\(\frac{y}{3}=-9\Rightarrow y=-9\cdot3=-27\)
\(\frac{z}{5}=-9\Rightarrow z=-9\cdot5=-45\)
b/ 2x =3y= 5z và x-y+z =-33
=> 2x = 3y, 3y = 5z
=> x/3 = y/2, y/5 = z/3
=> x/15 = y/10 = z/6 và x - y + z = -33
áp dụng tính chất của dãy tỉ số bằng nhau, có:
\(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{x-y+z}{15-10+6}=\frac{-33}{11}=-3\)
suy ra: \(\frac{x}{15}=-3\Rightarrow x=-3\cdot15=-45\)
\(\frac{y}{10}=-3\Rightarrow y=-3\cdot10=-30\)
\(\frac{z}{6}=-3\Rightarrow z=-3\cdot6=-18\)
a) \(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x^2}{4}=\frac{y^2}{9}\)
Áp dụng dãy tỉ số bằng nhau:
\(\frac{x^2}{4}=\frac{y^2}{9}=\frac{x^2-y^2}{4-9}=-\frac{20}{-5}=4\)
=> \(\frac{y^2}{9}=4\Rightarrow y^2=36\Rightarrow y=\pm6\)
+) Với y = 6 => \(\frac{x}{2}=\frac{6}{3}=2\Rightarrow x=4\)và \(\frac{z}{5}=\frac{y}{4}=\frac{6}{4}\Rightarrow z=\frac{15}{2}\)
+) Với y =-6 => \(\frac{x}{2}=\frac{-6}{3}=-2\Rightarrow x=-4\) và \(\frac{z}{5}=\frac{y}{4}=\frac{-6}{4}\Rightarrow z=\frac{-15}{2}\)
Ta có: \(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{x^2}{64}=\frac{y^2}{144}\)
\(\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}=\frac{y^2}{144}=\frac{z^2}{225}\)
\(\Rightarrow\frac{x^2}{64}=\frac{y^2}{144}=\frac{z^2}{225}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x^2}{64}=\frac{y^2}{144}=\frac{z^2}{225}=\frac{x^2-y^2}{64-144}=\frac{-20}{-80}=\frac{1}{4}\)
\(\Rightarrow\frac{x^2}{64}=\frac{1}{4}\rightarrow x^2=4\rightarrow x=\pm2\)
\(\frac{y^2}{144}=\frac{1}{4}\rightarrow y^2=36\rightarrow y=\pm6\)
\(\frac{z^2}{225}=\frac{1}{4}\rightarrow z^2=56,25\rightarrow z=\pm7,5\)
Vậy \(\left(x;y;z\right)=\left(2;6;7,5\right);\left(-2;-6;-7,5\right)\)
2a) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\) => \(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)
=> \(\hept{\begin{cases}\frac{x}{10}=2\\\frac{y}{6}=2\\\frac{z}{21}=2\end{cases}}\) => \(\hept{\begin{cases}x=2.10=20\\y=2.6=12\\z=2.21=42\end{cases}}\)
Vậy x,y,z lần lượt là 20; 12; 42
#)Giải :
Bài 2 :
d) Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)
\(\Rightarrow x=2k;y=3k;z=5k\)
\(\Rightarrow2k.3k.5k=810\)
\(\Rightarrow30k^3=810\)
\(\Rightarrow k^3=3\)
\(\Rightarrow k=3\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{2}=3\\\frac{y}{3}=3\\\frac{z}{5}=3\end{cases}\Rightarrow\hept{\begin{cases}x=6\\x=9\\x=15\end{cases}}}\)
Vậy x = 6; y = 9; z = 15
Ta co : x/2=y/3;y/4=z/5
=>x/8=y/12=z/15=(x+y-z) / (8+12-15)=10/5=2
Ta có x/8=2
=> x=16
y/12=2
=> y=24
z/15=2
=> z=30