Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Sửa: C=(x+2)2+\(\left(y-\frac{1}{5}\right)^2\)+10
Ta có: \(\hept{\begin{cases}\left(x+2\right)^2\ge0\forall x\\\left(y-\frac{1}{5}\right)^2\ge0\forall y\end{cases}}\)
\(\Rightarrow\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2+10\ge10\forall x;y\)
hay C \(\ge10\). Dấu "=" \(\Leftrightarrow\hept{\begin{cases}\left(x+2\right)^2=0\\\left(y-\frac{1}{5}\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+2=0\\y-\frac{1}{5}=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-2\\y=\frac{1}{5}\end{cases}}}\)
Áp dụng BĐT trị tuyệt đối ta được:
\(A=\left|x\right|+\left|8-x\right|\)
\(\ge\left|x+8-x\right|=\left|8\right|=8\)
Dấu "=" xả ra khi và chỉ khi:
\(x\left(8-x\right)\ge0\)
\(\Leftrightarrow0\le x\le8\)
Vậy:\(A_{min}=8\Leftrightarrow0\le x\le8\)
Áp dụng bất đẳng thức GTTĐ \(\left|A\right|+\left|B\right|\ge\left|A+B\right|\) ta có :
\(A=\left|x+1\right|+\left|y-2\right|\ge\left|x+1+y-2\right|=\left|x+y-1\right|\)
Thay x+y=5 vào A ta có :
\(A\ge\left|5-1\right|=\left|4\right|=4\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x+1\ge0\\y-2\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge-1\\y\ge2\end{cases}}}\)
Vậy Amin = 4 <=> x >=-1 và y >=2
\(A=\left|x+1\right|+\left|y-2\right|\ge\left|x+1+y-2\right|=\left|4\right|=4\)
Dấu "=" xảy ra \(\Leftrightarrow\orbr{\begin{cases}x+1\ge0\\y-2\ge0\end{cases}\Leftrightarrow\orbr{\begin{cases}x\ge-1\\y\ge2\end{cases}}}\)
Vậy:\(A_{Min}=4\Leftrightarrow\hept{\begin{cases}x\ge-1\\y\ge2\end{cases}}\)
\(A=\left|x\right|+\left|8-x\right|\ge\left|x+8-x\right|=\left|8\right|=8\)
\(\Rightarrow A_{Min}=8\Leftrightarrow x\ge0\)
bùi thị ánh phương cute bạn tham khảo bài làm tương tự này nhé : Câu hỏi của bùi thị ánh phương cute - Toán lớp 7 - Học toán với OnlineMath
anh ctv trả lời đúng r mà sao ko k lun cho nhanh
nhá
học tốt