K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2015

chtt chẳng thấy có gì hết

30 tháng 12 2015

2A=2+22+23+...+2101

2A+1=1+2+22+...+2101=A+2101

2A-A=2101-1

A=2101-1

nên 250*(A+1)=250*(2101-1+1)=250*2101=2151

Vậy m=151

7 tháng 1 2016

đời ạ      tổng A=2101 -.1nha biết tính ko   rồi cứa thế ra m=151     

14 tháng 1 2016

Ban dich day :

Cho A=1+2+22+23+...+2100

Neu 250. (A+1)=2m thi m=

Tra loi: m=

Tich nha!

30 tháng 12 2015

chtt nha NGHIEM THI DAI TRANG

30 tháng 12 2015

Hiểu gì chết liền

 

25 tháng 4 2020

1) Đặt \(A=2+2^2+2^3+...+2^{100}\)

\(=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{99}+2^{100}\right)\)

\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{99}\left(1+2\right)\)

\(=2.3+2^3.3+...+2^{99}.3\)

Vì \(3⋮3\) nên \(2.3+2^3.3+...+2^{99}.3⋮3\)

hay \(A⋮3\)(đpcm)

2) Đặt \(B=3+3^2+3^3+...+3^{1998}\)

\(=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{1996}+3^{1997}+3^{1998}\right)\)

\(=3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+...+3^{1996}\left(1+3+3^2\right)\)

\(=3.13+3^4.13+...+3^{1996}.13\)

\(=39+3^3.39+...+3^{1995}.39\)

Vì \(39⋮39\)nên \(39+3^3.39+...+3^{1995}.39⋮39\)

hay \(B⋮39\)(đpcm)

25 tháng 4 2020

a) 2+22+23+...+2100

=(2+22+23+24+25)+(26+27+28+29+210)+.....+(296+297+298+299+2100)

=2(1+2+22+23+24)+26(1+2+22+23+24)+....+296(1+2+22+23+24)

=2(1+2+4+8+16)+26(1+2+4+8+16)+....+296(1+2+4+8+16)

=2.31+26.31+....+296.31

=31(2+26+....+296)

=> đpcm

26 tháng 9 2018

Đặt \(A=1+2+2^2+2^3+...+2^{20}\)

\(2A=2+2^2+2^3+2^4+...+2^{21}\)

\(2A-A=\left(2+2^2+2^3+...+2^{21}\right)-\left(1+2+2^2+...+2^{20}\right)\)

\(A=2^{21}-1\)

26 tháng 9 2018

Ta đặt 

A= 1+2^1+2^2+2^3+....2^20

2A= 21+22+23+....+221

=>2A-A=(2^1+2^2+2^3+...+2^21)-(1+2^2+2^3+...)

1A=2^21-1

Vậy A=2^21-1

10 tháng 1 2016

a) S=1-3+3^2-3^3+...+3^98-3^99

S=(1-3+3^2-3^3)+(3^4-3^5+3^6-3^7)+...+(3^96-3^97+3^98-3^99)

S=-20+3^4(1-3+3^2-3^3)+...+3^96(1-3+3^2+3^3)

S=-20+3^4(-20)+...+3^96(-20)

S=-20(1+3^4+...+3^96)

=>S chia hết cho -20

b) S=1-3+3^2-3^3+...+3^98-3^99

3S=3(1-3+3^2-3^3+...+3^98-3^99)

3S=3-3^2+3^3-3^4+...+3^99-3^100

3S+S=(3-3^2+3^3-3^4+...+3^99-3^100)+(1-3+3^2-3^3+..+3^98-3^99)

4S=1-3^100

S=(1-3^100)/4

=>1-3^100 chia hết cho 4 (vì z là số nguyên)

=>3^100-1 chia hết cho 4

=>3^100 chia 4 dư 1

2 tháng 5 2020

\(S=2^0+2^1+2^2+...+2^{99}+2^{100}\)

\(=1+2+\left(2^2+2^3+2^4\right)+...+\left(2^{98}+2^{99}+2^{100}\right)\)

\(=3+2^2.\left(1+2+4\right)+...+2^{98}.\left(1+2+4\right)\)

\(=3+7.\left(2^2+2^5+...+2^{98}\right)\)chia 7 dư 3

3 tháng 5 2020

\(S=2^0+2^1+2^2+...+2^{99}+2^{100}\)

\(S=\left(2^0+2^1+2^2\right)+\left(2^3+2^4+2^5\right)+....+\left(2^{98}+2^{99}+2^{100}\right)\)

\(S=\left(1+2+4\right)+2^3\left(1+2+4\right)+.....+2^{98}\left(1+2+4\right)\)

\(S=7+2^3\cdot7+....+2^{98}\cdot7\)

\(S=7\left(1+2^3+...+2^{98}\right)\)

=> S chia 7 dư 0 hay S chia hết cho 7

13 tháng 10 2018

\(S=1+2+2^2+...+2^{99}\)

\(S=\left(1+2\right)+\left(2^2+2^3\right)+...+\left(2^{98}+2^{99}\right)\)

\(S=3+2^2.3+...+2^{98}.3\)

\(=3\left(1+2^2+...+2^{98}\right)⋮3\)