K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 5 2021

Câu 5:

2) Ta có:

\(\Delta^'=\left[-\left(m-1\right)\right]^2-1\cdot\left(m-5\right)=m^2-2m+1-m+5\)

\(=m^2-3m+6=\left(m^2-3m+\frac{9}{4}\right)+\frac{15}{4}=\left(m-\frac{3}{2}\right)^2+\frac{15}{4}\ge\frac{15}{4}>0\left(\forall m\right)\)

=> PT luôn có 2 nghiệm phân biệt

Khi đó theo hệ thức viet ta có: \(\hept{\begin{cases}x_1+x_2=2m-2\\x_1x_2=m-5\end{cases}}\)

Ta có: \(P^2=\left(x_1-x_2\right)^2=\left(x_1+x_2\right)^2-4x_1x_2=\left(2m-2\right)^2-4\left(m-5\right)\)

\(=4m^2-8m+4-4m+20\)

\(=4m^2-12m+24=\left(4m^2-12m+9\right)+15=\left(2m-3\right)^2+15\ge15\left(\forall m\right)\)

\(\Rightarrow P\ge\sqrt{15}\)

Dấu "=" xảy ra khi: \(2m-3=0\Rightarrow m=\frac{3}{2}\)

Vậy \(P_{min}=\sqrt{15}\Leftrightarrow m=\frac{3}{2}\)

24 tháng 5 2021

Đề này đề thi thử vào THPT Ngô Gia Tự 2021-2022 phải không?

Câu 6:

Gọi 2 giao điểm lần lượt có tọa độ là: \(\left(-1;y_1\right)\) và \(\left(2;y_2\right)\)

Thay vào (P) ta được: \(\hept{\begin{cases}y_1=-2.\left(-1\right)^2=-2\\y_2=-2.2^2=-8\end{cases}}\)

=> Tọa độ 2 giao điểm lần lượt là \(\left(-1;-2\right)\) và \(\left(2;-8\right)\)

Lần lượt thay vào (d) ta được: \(\hept{\begin{cases}-a+b=-2\\2a+b=-8\end{cases}}\Rightarrow\hept{\begin{cases}a=-2\\b=-4\end{cases}}\)

Vậy \(\hept{\begin{cases}a=-2\\b=-4\end{cases}}\)

Đề này mình làm full rồi:)) 

12 tháng 7 2018

\(f\left(x\right)=\sqrt{3-x}+\sqrt{2+x}\ge\sqrt{3-x+2+x}=\sqrt{5}\)

Dấu "=" xảy ra \(\Leftrightarrow\orbr{\begin{cases}3-x=0\\2+x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-2\end{cases}}}\)

Vậy GTNN của \(f\left(x\right)=\sqrt{5}\) khi và chỉ khi x = 3; x = -2

13 tháng 7 2018

bạn ơi ở bước:

f(x)=\(\sqrt{3-x}+\sqrt{2+x}\ge\sqrt{3-x+2+x}\)

làm sao bạn ra đc bất đẳng thức như vậy ạ

5 tháng 7 2018

Đặt x = a - b ; y = b - c ; z = c - a thì x + y + z = a - b + b - c + c - a = 0

Ta có : \(\sqrt{\frac{1}{(a-b)^2}+\frac{1}{(b-c)^2}+\frac{1}{(c-a)^2}=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{y^2}}\)

\(=(\frac{1}{x}+\frac{1}{y}+\frac{1}{y})^2-2(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx})\)

\(=(\frac{1}{x}+\frac{1}{y}+\frac{1}{z})^2-2\frac{x+y+z}{xyz}\)

\(=(\frac{1}{x}+\frac{1}{y}+\frac{1}{z})^2=(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a})^2(đpcm)\)

Chúc bạn học tốt

9 tháng 10 2020

Bài 1: Ta có: \(\sqrt{2020}-\sqrt{2019}=\frac{1}{\sqrt{2020}+\sqrt{2019}};\)\(\sqrt{2018}-\sqrt{2017}=\frac{1}{\sqrt{2018}+\sqrt{2017}}\)

Dễ thấy \(\sqrt{2020}+\sqrt{2019}>\sqrt{2018}+\sqrt{2017}\)nên \(\frac{1}{\sqrt{2020}+\sqrt{2019}}< \frac{1}{\sqrt{2018}+\sqrt{2017}}\)

Suy ra\(\sqrt{2020}-\sqrt{2019}< \sqrt{2018}-\sqrt{2017}\)

Bài 2: Xét biểu thức \(\sqrt{a^2+a^2\left(a+1\right)^2+\left(a+1\right)^2}=\sqrt{a^2\left(a^2+2a+1+1\right)+\left(a+1\right)^2}=\sqrt{a^4+2a^2\left(a+1\right)+\left(a+1\right)^2}=\sqrt{\left(a^2+a+1\right)^2}=a^2+a+1\)(Vì \(a^2+a+1>0\forall a\inℝ\))

Áp dụng công thức tổng quát trên, ta được: \(\sqrt{2019^2+2019^2.2020^2+2020^2}=2019^2+2019+1\)(là số tự nhiên) (đpcm)

29 tháng 7 2020

Bài 2:

 a, Ta có 

   \(3\sqrt{\left(-2\right)^2}+\sqrt{\left(-5\right)^2}\)

\(3\left|-2\right|+\left|-5\right|\)

=\(6+5\)

= 11

Vậy \(3\sqrt{\left(-2\right)^2}+\sqrt{\left(-5\right)^2}=11\)

29 tháng 7 2020

b, Ta có 

     \(\sqrt{6+2\sqrt{5}}-\sqrt{5}\)

=  \(\sqrt{5+2\sqrt{5}+1}-\sqrt{5}\)

=   \(\sqrt{\left(\sqrt{5}+1\right)^2}-\sqrt{5}\)

=    \(\left|\sqrt{5}+1\right|-\sqrt{5}\)

=    \(\sqrt{5}+1-\sqrt{5}=1\)

Vậy \(\sqrt{6+2\sqrt{5}}-\sqrt{5}=1\)

<=> (x2 - 2x)2 + x2 - 2x + 1 - 13 = 0

<=> (x2 - 2x)2 + x2 - 2x - 12 = 0

Đặt t = x2 - 2x

Khi đó ta có pt: t2 + t - 12 = 0

<=> t2 + 4t - 3t - 12 = 0

<=> (t - 3)(t + 4) = 0 <=> \(\orbr{\begin{cases}t=3\\t=-4\end{cases}}\)

*Với t = 3 ta có: x2 - 2x = 3

<=> x2 - 2x - 3 = 0

<=> (x - 3)(x + 1) = 0 <=> \(\orbr{\begin{cases}x=3\\x=-1\end{cases}}\)

*Với t = -4 ta có: x2 - 2x = -4

<=> x2 - 2x + 4 = 0

<=> (x - 1)2 + 3 = 0 (Vô nghiệm)

Vậy S = {3;-1}

10 tháng 3 2020

(x2-2x)+ (x-1)- 13 = 0

<=> x^4 - 4x^3 + 4x^2 + x^2 - 2x + 1 - 13 = 0

<=>  x^3 - 4x^3 + 5x^2 - 2x - 12 = 0

<=> x^4 + x^3 - 5x^3 - 5x^2 + 10x^2 + 10x - 12x - 12 = 0

<=>  x^3(x + 1) - 5x^2(x + 1) + 10x(x + 1) - 12(x + 1) = 0

<=>  (x^3 - 5x^2 + 10x - 12)(x + 1) = 0

<=> (x^3 - 3x^2 - 2x^2 + 6x + 4x - 12)(x + 1) = 0

<=>  [x^2(x - 3) - 2x(x - 3) + 4(x - 3)](x + 1) = 0

<=>  (x^2 - 2x + 4)(x - 3)(x + 1) = 0

có x^2 - 2x + 4 = (x - 1)^2 + 3 lớn hơn 0

<=> x - 3 = 0 hoặc x + 1 = 0

<=>  x = 3 hoặc x = -1