Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\sqrt{3-x}+\sqrt{2-x}=1\)
\(\Rightarrow\sqrt{3+x}=1-\sqrt{2-x}\)
\(\Rightarrow3+x=1-2\sqrt{2-x}+2-x\)
\(\Rightarrow2x+2\sqrt{2-x}=0\)
\(\Rightarrow x+\sqrt{2-x}=0\)
\(\Rightarrow2-x=\left(-x\right)^2\)
\(\Rightarrow2-x=x^2\)
\(\Rightarrow2-x^2-x=0\)
\(\Rightarrow x^2+x-2=0\)
\(\Rightarrow\orbr{\begin{cases}x+2=0\\x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-2\\x=1\end{cases}}}\)
Vậy....
ĐKXĐ x \(\ge\)0
ta có pt <=> \(2\left(x^2+2\right)-2x=3\sqrt{x\left(x^2+2\right)}\)
Đặt \(\sqrt{x}=a;\sqrt{x^2+2}=b\) ta đc
\(2b^2-2a^2=3ab\Leftrightarrow\left(a-2b\right)\left(2a+b\right)=0\)
Th1: a=2b
TH2: a= \(\frac{-1}{2}b\) đến đây bạn tự giải
\(\Leftrightarrow4\left(x+1\right)+\sqrt{2\left(x+1\right)^2+\left(x^2+1\right)}-3\sqrt{x^2+1}=0\)
\(a=x+1;\text{ }b=\sqrt{x^2+1}\)
\(\Rightarrow4a-3b+\sqrt{2a^2+b^2}=0\Leftrightarrow3b-4a=\sqrt{2a^2+b^2}\)
\(\Rightarrow\left(3b-4a\right)^2=2a^2+b^2\Leftrightarrow7\left(\frac{a}{b}\right)^2-12\frac{a}{b}+4=0\)
\(\Leftrightarrow\frac{a}{b}=\frac{6\pm2\sqrt{2}}{7}\)
Khá xấu nhưng vẫn giải được nhé. Bạn kiểm tra lại ở trên rồi tính toán nốt.
a/ \(x^2+4x+5=2\sqrt{2x+3}\)
ĐK: \(x\ge-\frac{3}{2}\)
Cách 1:
Đặt \(\sqrt{2x+3}=y+2\text{ (}y\ge-2\text{)}\Rightarrow\left(y+2\right)^2=2x+3\text{ (1)}\)
Pt đã cho trở thành \(\left(x+2\right)^2+1=2\left(y+2\right)\Leftrightarrow\left(x+2\right)^2=2y+3\text{ (2)}\)
\(\left(2\right)-\left(1\right)\Rightarrow\left(x+2\right)^2-\left(y+2\right)^2=2\left(y-x\right)\Leftrightarrow\left(x-y\right)\left(x+y+6\right)=0\)
\(\Leftrightarrow x=y\text{ }\left(\text{do }x\ge-\frac{3}{2};\text{ }y\ge-2\text{ nên }x+y+6\ge-\frac{3}{2}-2+6>0\right)\)
Do đó, phương trình đã cho tương tương:
\(x=\sqrt{2x+3}-2\Leftrightarrow x+2=\sqrt{2x+3}\Leftrightarrow\left(x+2\right)^2=2x+3\)
\(\Leftrightarrow x^2+2x+1=0\Leftrightarrow\left(x+1\right)^2=0\Leftrightarrow x=-1\)
Kết luận: \(x=-1.\)
Cách 2:
\(pt\Leftrightarrow\frac{1}{4}\left(2x+3\right)^2+\frac{1}{2}\left(2x+3\right)+\frac{5}{4}=2\sqrt{2x+3}\)
Đặt \(t=\sqrt{2x+3};\text{ }t\ge0\)
pt thành \(\frac{1}{4}t^4+\frac{1}{2}t^3+\frac{5}{4}=2t\Leftrightarrow\left(t-1\right)^2\left(t^2+2t+5\right)=0\)
\(\Leftrightarrow t-1=0\text{ }\left(\text{do }t^2+2t+5=\left(t+1\right)^2+4>0\right)\)
\(\Leftrightarrow t=1\)
Do đó, phương trình đã cho tương đương:
\(\sqrt{2x+3}=1\Leftrightarrow x=-1\)
Kết luận: \(x=-1.\)
Cách 3:
\(pt\Leftrightarrow\left(x^2+2x+1\right)+\left[\left(2x+3\right)-2\sqrt{2x+3}+1\right]=0\)
\(\Leftrightarrow\left(x+1\right)^2+\left(\sqrt{2x+3}-1\right)^2=0\)
\(\Leftrightarrow x+1=0\text{ và }\sqrt{2x+3}-1=0\)
\(\Leftrightarrow x=-1\)
Kết luận: \(x=-1.\)
b/ \(2\left(x^2-3x+2\right)=3\sqrt{x^3+8}\)
ĐK: \(x\ge-2\)
\(pt\Leftrightarrow2\left(x^2-2x+4\right)-2\left(x+2\right)=3\sqrt{x+2}.\sqrt{x^2-2x+4}\)
Đặt \(a=\sqrt{x^2-2x+4};\text{ }b=\sqrt{x+2}\left(a>0;\text{ }b\ge0\right)\)
Pt thành: \(2a^2-2b^2=3ab\Leftrightarrow\left(a-2b\right)\left(2a+b\right)=0\)
\(\Leftrightarrow a=2b\text{ }\left(\text{do }a>0;\text{ }b\ge0\text{ nên }2a+b>0\right)\)
Pt đã cho tương đương: \(\sqrt{x^2-2x+4}=2\sqrt{x+2}\Leftrightarrow x^2-2x+4=4\left(x+2\right)\)
\(\Leftrightarrow x^2-6x-4=0\Leftrightarrow x=3+\sqrt{13}\text{ hoặc }x=3-\sqrt{13}\)
Kết luận: \(x=3+\sqrt{13};\text{ }x=3-\sqrt{13}\)
\(\text{ĐKXĐ: }2x+3\ge0\Leftrightarrow x\ge\frac{-3}{2}\)
\(\sqrt{2x+3}+x=x^2-3\)
\(\Leftrightarrow2x+3+\sqrt{2x+3}+\frac{1}{4}-x-\frac{1}{4}=x^2\)
\(\Leftrightarrow2x+3+\sqrt{2x+3}+\frac{1}{4}=x^2+x+\frac{1}{4}\)
\(\Leftrightarrow\left(\sqrt{2x+3}+\frac{1}{2}\right)=\left(x+\frac{1}{2}\right)^2\)
\(\Leftrightarrow\sqrt{2x+3}+\frac{1}{2}=x+\frac{1}{2}\)
\(\Leftrightarrow\sqrt{2x+3}=x\)
\(\Leftrightarrow2x+3=x^2\)
tui nghĩ tới đây là you giải dc
\(a,\sqrt{2x+5}=\sqrt{1-x}\)
\(\Rightarrow2x+5=1-x\)
\(2x+x=1-5\)
\(3x=-4\Leftrightarrow x=\frac{-4}{3}\)
Vậy \(S=\left\{-\frac{4}{3}\right\}\)thuộc tập nghiệm của pt trên
\(x^2+6x+9=\left(\sqrt{2x+3}+1\right)^2\)
\(\left(x+3\right)^2=nhưcáitrên\)
\(x+3=\sqrt{2x+3}+1\)
\(x+2=\sqrt{2x+3}\)
\(x^2+4x+4=2x+3\)