Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lần lượt tính giá trị biểu thức tại x = 3, y = 4, z = 5; ta được
N: x2 = 32 = 9;
T: y2 = 42 =16;
Ă: 1212(xy + z) = 1212(3.4 +5)= 8,5;
L: x2 - y2 = 32 – 42 = -7;
M: t2 = x2 + y2 = 32 + 42 =25 → t = 5 (t là độ dài cạnh huyền);
Ê: 2x2 +1 = 2,52 + 1 = 51;
H: x2 + y2= 32 + 42 =25;
V: z2 – 1= 52 – 1 = 24;
I: 2(y + z) = 2(4 +5) =18;
Điền vào ô trống
Hướng dẫn giải:
Trước hết ta thu gọn các đơn thức đồng dạng để xác định mỗi chữ cái tương ứng với kết quả nào trong ô trống của bảng.
V 2x2 + 3x2 – 1212 x2 = 9292 x2;
Ư 5xy – 1313 xy + xy = 173173 xy;
N - 1212 x2 + x2 = 1212 x2;
U - 6x2y – 6x2y = -12x2y ;
H xy – 3xy + 5xy = 3xy;
Ê 3xy2 – (-3xy2) = 6 xy2;
Ă 7y2z3 + (-7y2z3) = 0;
L - 1515 x2 + (- 1515 x2) = - 2525 x2;
Vậy tên của tác giả cuốn Đại VIệt sử kí là Lê Văn Hưu.
∆AHB và ∆ CKD có:
HB=KD.
AHB^=CKD^
AH=Ck
Nên ∆ AHB = ∆ CKD(c.g.c)
suy ra AB=CD.
tương tự ∆ CEB = ∆ AFD(c.g.c)
suy ra BC=AD.
b) ∆ABD và ∆CDB có:
AB=CD(câu a)
BC=AD(câu a)
BD chung.
Do đó ∆ABD=∆CDB(c.c .c)
Suy ra ˆABD=CDB^
Vậy AB // CD( hai góc so le trong bằng nhau)
Giải:
Do \(\left(2016a+13b-1\right)\left(2016^a+2016a+b\right)\) \(=2015\)
Nên \(2016a+13b-1\) và \(2016^a+2016a+b\) là 2 số lẻ \((*)\)
Ta xét 2 trường hợp:
Trường hợp 1: Nếu \(a\ne0\) thì \(2016^a+2016a\) là số chẵn
Do \(2016^a+2016a+b\) lẻ \(\Rightarrow b\) lẻ
Với \(b\) lẻ \(\Rightarrow13b-1\) chẵn do đó \(2016a+13b-1\) chẵn (trái với \((*)\))
Trường hợp 2: Nếu \(a=0\) thì:
\(\left(2016.0+13b-1\right)\left(2016^0+2016.0+b\right)\) \(=2015\)
\(\Leftrightarrow\left(13b-1\right)\left(b+1\right)=2015=1.5.13.31\)
Do \(b\in N\Rightarrow\left(13b-1\right)\left(b+1\right)=5.403=13.155\) \(=31.65\)
Và \(13b-1>b+1\)
\(*)\) Nếu \(b+1=5\Rightarrow b=4\Rightarrow13b-1=51\) (loại)
\(*)\) Nếu \(b+1=13\Rightarrow b=12\Rightarrow13b-1=155\) (chọn)
\(*)\) Nếu \(b+1=31\Rightarrow b=30\Rightarrow13b-1=389\) (loại)
Vậy \(\left(a,b\right)=\left(0;12\right)\)
Gọi chiều rộng của mảnh đất hình chữ nhật là \(x\left(m,x>0\right)\)
Chiều dài của mảnh đất hình chữ nhật: \(\dfrac{720}{x}\left(m\right)\)
Chiều rộng mới của mảnh đất hình chữu nhật \(x+6\left(m\right)\)
Chiều dài mới của mảnh đất hình chữ nhật \(\dfrac{720}{x}-4\left(m\right)\)
Theo đề bài, ta có PT: \(\left(x+6\right)\left(\dfrac{720}{x}-4\right)=720\)
\(\Leftrightarrow720-4x+\dfrac{4320}{x}-24=720\)
\(\Leftrightarrow720x-4x^2+4320-24x-720x=0\)
\(\Leftrightarrow-4x^2-24x+4320=0\)
\(\Leftrightarrow\left(x-30\right)\left(x+36\right)=0\)
Vậy \(x=30\) (thoả mãn)
Chiều rộng của mảnh vườn hình chữ nhật 24m, chiều dài của mảnh vườn hình chữ nhật 30m
Chu vi của mảnh đất hình chữ nhật: \(\left(24+30\right).2=108m\)