Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì hai đường tròn tâm A và B có bán kính bằng nhau nên AM = AN = BM = BN
Xét \(\Delta AMN\)và \(\Delta BMN\)
AM = BM (cmt)
AN = BN (cmt)
MN: cạnh chung
Suy ra \(\Delta AMN\)\(=\Delta BMN\left(c-c-c\right)\)
b) Gọi O là giao điểm của AB và MN
Dễ chứng minh được: \(\widehat{NAB}=\widehat{MBA}\)
Mà 2 góc này ở vị trí so le trong nên \(AN//BM\)
C/m: \(\Delta AON=\Delta BOM\left(g-c-g\right)\)
\(\Rightarrow OA=OB\)(hai cạnh tương ứng)
Sau đó c/m \(AB\perp MN\)suy ra MN là đường trung trực của AB
A B C M a, Vì ABC cân => AB = AC
=> góc B = góc C
mà M là tđ BC => BM = MC
Xét tam giác ABM và tam giác ACM có : AB = AC
góc B = góc C
BM = MC
=> tam giác ABM = tam giác ACM
b.Xét tam giác HBM và tam giác KCM có : BH = CK
góc B = góc C
BM = CM
=> tam giác HBM = tam giác KCM
c.
A B C M H K I
a)xet \(\Delta\)ABM và \(\Delta\)ACM có:
AB=AC(gt)
AM là cạnh chung
BM=CM(M là trung điểm BC)
nên \(\Delta\)ABM=\(\Delta\)ACM
b)ta có :AB=AC(gt)
nên \(\Delta\)ABC cân tại A
suy ra góc ABC=góc ACB
xét \(\Delta\)HMB và \(\Delta\)KMC có:
góc ABC=góc ACB
BH=CK(gt)
BM=CM(M là trung điểm BC)
nên \(\Delta\)HBM=\(\Delta\)KCM
c)ta có: BH=CK(gt)
mà AB=AC(gt)
nên AH=AK
suy ra \(\Delta\)AHK cân tại A
ta có:M là trung điểm BC(gt)
nên AM là đường trung tuyến
mà \(\Delta\)ABC cân
nên AM là đường cao,đường phân giác
nên góc BAM=góc CAM
suy ra AM là đường phân giác của \(\Delta\)AHK
mà \(\Delta\)AHK cân tại A
suy ra AM là đường cao
suy ra AM vuông với HK
mà AM vuông với BC(aM là đường cao)
suy ra HK//AM
Xét hai góc AMB và AMC có:
AM là cạnh chung
Góc AMC =góc AMB(gt)
BM = MC (gt)
Do đó :góc AMC =góc AMB
Suy ra:AM =AC (hai cạnh tương ứng)
a)
- Vì \(\sqrt{x+3}\) lớn hơn hoặc = 0 với mọi x lớn hơn hoặc = -3
=> A lớn hơn hoặc = 2.
Dấu = xra khi và chỉ khi \(\sqrt{x+3}\)= 0
=> x + 3 = 0
x = -3
Vậy..........
b)
Ta có: B lớn hơn hoặc = / x - 1 / + / x - 3 / = / x - 1 / + / 3 - x /
Mà / x - 1 / + / 3 - x / lớn hơn hoặc = / x - 1 + 3 - x / = /2/ = 2
=> B lớn hơn hoặc = 2.
Dấu = xra khi và chỉ khi : (x-1)(3-x) lớn hơn hoặc = 0 và / x - 2 / = 0. (1)
Giải (1) được x = 2 TM.
Vậy min B = 2 <=> x=2.
Khi 3 điểm nào đó nằm trên cùng 1 đường thảng ta nói chúng thảng hàng .
CÁCH 1 : DỰA VÀO TIÊN ĐỀ Ơ- CLÍT