K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a.Ta có:\(2x^2-4xy+4y^2+2x+1=0\)

\(\Rightarrow\left[x^2-2x\left(2y\right)+\left(2y\right)^2\right]+\left(x^2+2x+1\right)=0\)

\(\Rightarrow\left(x-2y\right)^2+\left(x+1\right)^2=0\)

Dấu "=" xảy ra khi và chỉ khi x-2y=0 và x+1=0

Suy ra x=-1;y=-1/2

b.Ta có:\(x^2-6x+y^2-6y+21=3\)

\(\Rightarrow\left(x^2-6x+9\right)+\left(y^2-6y+9\right)+3-3=0\)

\(\Leftrightarrow\left(x-3\right)^2+\left(y-3\right)^2=0\)

Dấu "=" xảy ra khi và chỉ khi x-3=y-3=0

Suy ra x=y=3

c.Ta có:\(2x^2-8x+y^2-2xy+16=0\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(x^2-8x+16\right)=0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(x-4\right)^2=0\)

Dấu "=" xảy ra khi và chỉ khi:x-y=x-4=0

Suy ra x=y=4

6 tháng 8 2020

a) 2x2 - 4xy + 4y2 + 2x + 1 = 0

<=> x2 - 4xy + 4y2 + x2 + 2x + 1 = 0

<=> ( x - 2y )2 + ( x + 1 )2 = 0

<=> \(\hept{\begin{cases}x-2y=0\\x+1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1\\y=-\frac{1}{2}\end{cases}}\)

b) x2 - 6x + y2 - 6y + 21 = 3

<=> x2 - 6x + y2 - 6y + 21 - 3 = 0

<=> x2 - 6x + y2 - 6y + 18 = 0

<=> x2 - 6x + 9 + y2 - 6y + 9 = 0

<=> ( x - 3 )2 + ( y - 3 )2 = 0

<=> \(\hept{\begin{cases}x-3=0\\y-3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=3\end{cases}}\)

c) 2x2 - 8x + y2 - 2xy + 16 = 0

<=> x2 - 2xy + y2 + x2 - 8x + 16 = 0

<=> ( x - y )2 + ( x - 4 )2 = 0

<=> \(\hept{\begin{cases}x-y=0\\x-4=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4\\y=4\end{cases}}\)

21 tháng 10 2018

a. Biểu thức ko thể biểu diễn dưới dạng tích của các thừa số

b. (x-1)(4x+1)

c. -(3z^2-5y^2-6xy-3x^2)

d. x(y^2-2xy+x-9)

e. -(y-x)(y-x+2)

f. y^3+xy^2+3x^2y-y+x^2-x

HỌC TỐT.

22 tháng 10 2018

\(4x^2-3x-1\)

\(=4x^2-4x+x-1\)

\(=4x\left(x-1\right)+\left(x-1\right)\)

\(=\left(x-1\right)\left(4x+1\right)\)

5 tháng 10 2015

a) VÌ 2x2 + y2 - 2y - 6x + 2xy + 5 = 0 nên

2(2x2 + y2 - 2y - 6x + 2xy + 5) = 0

4x^2+2y^2-4y-12x+4xy+10=0

(4x^2+4xy+y^2)-6(2x+y)+9+(y^2-2y+1)=0

(2x+y)^2-6(2x+y)+9+(y-1)^2=0

(2x+y-3)^2+(y-1)^2=0(*)

vì (2x+y-3)^2>=0 và(Y-1)^2>=0nên (*) xảy ra khi

(2x+y-3)^2=0<=>2x-2=0<=>x=1

(Y-1)^2=0<=>y=1

 

 

28 tháng 12 2016

x=1 y=1

27 tháng 9 2018

\(1)\)

\(a)\)\(A=5-8x-x^2\)

\(A=-\left(x^2+8x+16\right)+21\)

\(A=-\left(x+4\right)^2+21\le21\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(-\left(x+4\right)^2=0\)

\(\Leftrightarrow\)\(x=-4\)

Vậy GTLN của \(A\) là \(21\) khi \(x=-4\)

\(b)\)\(B=5-x^2+2x-4y^2-4y\)

\(-B=\left(x^2-2x+1\right)+\left(4y^2+4y+1\right)-7\)

\(-B=\left(x-1\right)^2+\left(2y+1\right)^2-7\ge-7\)

\(B=-\left(x-1\right)^2-\left(2y+1\right)^2+7\le7\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}-\left(x-1\right)^2=0\\-\left(2y+1\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=\frac{-1}{2}\end{cases}}}\)

Vậy GTLN của \(B\) là \(7\) khi \(x=1\) và \(y=\frac{-1}{2}\)

Chúc bạn học tốt ~ 

27 tháng 9 2018

\(2)\)\(A=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right).....\left(3^{64}+1\right)\)

\(2A=2\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right).....\left(3^{64}+1\right)\)

\(2A=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right).....\left(3^{64}+1\right)\)

\(2A=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right).....\left(3^{64}+1\right)\)

\(2A=\left(3^4-1\right)\left(3^4+1\right).....\left(3^{64}+1\right)\)

\(............\)

\(2A=\left(3^{64}-1\right)\left(3^{64}+1\right)\)

\(2A=3^{128}-1\)

\(A=\frac{2^{128}-1}{3}\)

Chúc bạn học tốt ~ 

6 tháng 7 2021

b) 10x - x2 - 9y2 + 6y - 100 

= - (x2 - 10x + 25) - (9y2 - 6y + 1) -  74

= - (x - 5)2 - (3x - 1)2 - 74 \(\le-74< 0\)

2 tháng 9 2020

Bài 1.

a) x( 8x - 2 ) - 8x2 + 12 = 0

<=> 8x2 - 2x - 8x2 + 12 = 0 

<=> 12 - 2x = 0

<=> 2x = 12

<=> x = 6

b) x( 4x - 5 ) - ( 2x + 1 )2 = 0

<=> 4x2 - 5x - ( 4x2 + 4x + 1 ) = 0

<=> 4x2 - 5x - 4x2 - 4x - 1 = 0

<=> -9x - 1 = 0

<=> -9x = 1

<=> x = -1/9

c) ( 5 - 2x )( 2x + 7 ) = ( 2x - 5 )( 2x + 5 )

<=> -4x2 - 4x + 35 = 4x2 - 25

<=> -4x2 - 4x + 35 - 4x2 + 25 = 0

<=> -8x2 - 4x + 60 = 0

<=> -8x2 + 20x - 24x + 60 = 0

<=> -4x( 2x - 5 ) - 12( 2x - 5 ) = 0

<=> ( 2x - 5 )( -4x - 12 ) = 0

<=> \(\orbr{\begin{cases}2x-5=0\\-4x-12=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{2}\\x=-3\end{cases}}\)

d) 64x2 - 49 = 0

<=> ( 8x )2 - 72 = 0

<=> ( 8x - 7 )( 8x + 7 ) = 0

<=> \(\orbr{\begin{cases}8x-7=0\\8x+7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{7}{8}\\x=-\frac{7}{8}\end{cases}}\)

e) ( x2 + 6x + 9 )( x2 + 8x + 7 ) = 0

<=> ( x + 3 )2( x2 + x + 7x + 7 ) = 0

<=> ( x + 3 )[ x( x + 1 ) + 7( x + 1 ) ] = 0

<=> ( x + 3 )2( x + 1 )( x + 7 ) = 0

<=> x = -3 hoặc x = -1 hoặc x = -7

g) ( x2 + 1 )( x2 - 8x + 7 ) = 0

Vì x2 + 1 ≥ 1 > 0 với mọi x

=> x2 - 8x + 7 = 0

=> x2 - x - 7x + 7 = 0

=> x( x - 1 ) - 7( x - 1 ) = 0

=> ( x - 1 )( x - 7 ) = 0

=> \(\orbr{\begin{cases}x-1=0\\x-7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=7\end{cases}}\)

Bài 2.

a) ( x - 1 )2 - ( x - 2 )( x + 2 )

= x2 - 2x + 1 - ( x2 - 4 )

= x2 - 2x + 1 - x2 + 4

= -2x + 5

b) ( 3x + 5 )2 + ( 26x + 10 )( 2 - 3x ) + ( 2 - 3x )2

= 9x2 + 30x + 25 - 78x2 + 22x + 20 + 9x2 - 12x + 4

= ( 9x2 - 78x2 + 9x2 ) + ( 30x + 22x - 12x ) + ( 25 + 20 + 4 )

= -60x2 + 40x2 + 49

d) ( x + y )2 - ( x + y - 2 )2

= [ x + y - ( x + y - 2 ) ][ x + y + ( x + y - 2 ) ]

= ( x + y - x - y + 2 )( x + y + x + y - 2 )

= 2( 2x + 2y - 2 )

= 4x + 4y - 4

Bài 3.

 A = 3x2 + 18x + 33

= 3( x2 + 6x + 9 ) + 6 

= 3( x + 3 )2 + 6 ≥ 6 ∀ x

Đẳng thức xảy ra <=> x + 3 = 0 => x = -3

=> MinA = 6 <=> x = -3

B = x2 - 6x + 10 + y2

= ( x2 - 6x + 9 ) + y2 + 1

= ( x - 3 )2 + y2 + 1 ≥ 1 ∀ x,y

Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-3=0\\y^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=0\end{cases}}\)

=> MinB = 1 <=> x = 3 ; y = 0

C = ( 2x - 1 )2 + ( x + 2 )2

= 4x2 - 4x + 1 + x2 + 4x + 4

= 5x2 + 5 ≥ 5 ∀ x

Đẳng thức xảy ra <=> 5x2 = 0 => x = 0

=> MinC = 5 <=> x = 0

D = -2/7x2 - 8x + 7 ( sửa thành tìm Max )

Để D đạt GTLN => 7x2 - 8x + 7 đạt GTNN

7x2 - 8x + 7 

= 7( x2 - 8/7x + 16/49 ) + 33/7

= 7( x - 4/7 )2 + 33/7 ≥ 33/7 ∀ x

Đẳng thức xảy ra <=> x - 4/7 = 0 => x = 4/7

=> MaxC = \(\frac{-2}{\frac{33}{7}}=-\frac{14}{33}\)<=> x = 4/7

14 tháng 6 2018

1,2x2+2y2+z2+2xy+2xz+2yz+10x+6y+34=0

<=>(x2+y2+z2+2xy+2xz+2yz)+(x2+10x+25)+(y2+6y+9)=0

<=>(x+y+z)2+(x+5)2+(y+3)2=0

Mà \(\hept{\begin{cases}\left(x+y+z\right)^2\ge0\\\left(x+5\right)^2\ge0\\\left(y+3\right)^2\ge0\end{cases}\Rightarrow\left(x+y+z\right)^2+\left(x+5\right)^2+\left(y+3\right)^2\ge0}\)

\(\Rightarrow\hept{\begin{cases}\left(x+y+z\right)^2=0\\\left(x+5\right)^2=0\\\left(y+3\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x+y+z=0\\x=-5\\y=-3\end{cases}\Rightarrow}\hept{\begin{cases}z=8\\x=-5\\y=-3\end{cases}}}\)

2, A=2x2+4y2+4xy+2x+4y+9

=(x2+4xy+4y2)+(2x+4y)+x2+9

=[(x+2y)2+2(x+2y)+1]+x2+8

=(x+2y+1)2+x2+8

Vì \(\hept{\begin{cases}\left(x+2y+1\right)^2\ge0\\x^2\ge0\end{cases}}\Rightarrow\left(x+2y+1\right)^2+x^2\ge0\)

\(\Rightarrow\left(x+2y+1\right)^2+x^2+8\ge8\)

Dấu "=" xảy ra khi x=0,y=-1/2

Vậy Amin = 8 khi x=0,y=-1/2

14 tháng 6 2018

Bài 1:

Ta có:\(2x^2+2y^2+z^2+2xy+2xz+2yz+10x+6y+34=0\)

\(\Leftrightarrow\left(x^2+y^2+z^2+2xy+2xz+2yz\right)+\left(x^2+10x+25\right)+\left(y^2+6y+9\right)=0\)

\(\Leftrightarrow\left(x+y+z\right)^2+\left(x+5\right)^2+\left(y+3\right)^2=0\)

Vì 3 vế trên đều dương ,nên ta có

\(\hept{\begin{cases}x+y+z=0\\x+5=0\\y+3=0\end{cases}\Leftrightarrow\hept{\begin{cases}z=0-y-x\\x=-5\\y=-3\end{cases}}\Leftrightarrow\hept{\begin{cases}z=0+3+5=8\\x=-5\\y-3\end{cases}}}\)

Vậy ...........................................................................................................................

3 tháng 4 2020

Cách hack điểm hỏi đáp trên OLM => https://www.youtube.com/watch?v=sMvl8_N_N54