Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tham khảo: https://olm.vn/hoi-dap/detail/103429897807.html
hok tốt!!
Ta có : x2 – 2x + 1 = 6y2 - 2x + 2
\(\Rightarrow\) x2 – 1 = 6y2 \(\Rightarrow\) 6y2 = ( x - 1 ) . ( x + 1 ) chia hết cho 2 , do 6y2 chia hết cho 2 .
Mặt khác x - 1 + x + 1 = 2x chia hết cho 2 \(\Rightarrow\) ( x - 1 ) và ( x + 1 ) cùng chẵn hoặc cùng lẻ .
Vậy ( x - 1 ) và ( x + 1 ) cùng chẵn \(\Rightarrow\) ( x - 1 ) và ( x + 1 ) là hai số chẵn liên tiếp .
( x - 1 ) . ( x + 1 ) chia hết cho 8 \(\Rightarrow\) 6y2 chia hết cho 8 \(\Rightarrow\) 3y2 chia hết cho 4 \(\Rightarrow\) y2 chia hết cho 4 \(\Rightarrow\) y chia hết cho 2
y = 2 ( y là số nguyên tố )
Tìm được x = 5 .
Giải thích các bước giải:
Với pp nguyên tố và một trong hai số 8p+1,8p−18p+1,8p−1 là số nguyên tố thì số thứ ba là một hợp số. Thật vậy:
+) Với pp và 8p+18p+1 là số nguyên tố thì ta có:
∙∙ Xét p=2p=2. Khi đó ta có:
8p+1=8.2+1=178p+1=8.2+1=17 là số nguyên tố, 8p−1=8.2−1=158p−1=8.2−1=15 là hợp số.
Vậy bài toán đúng với p=2p=2
∙∙ Xét p=3p=3 thì 8p+1=8.3+1=258p+1=8.3+1=25 là hợp số (trái với giả thiết)
∙∙ Xét p≠3p≠3. Vì pp là số nguyên tố nên pp không chia hết cho 33.
Giả sử pp chia 33 dư 1⇒p=3k+1(k∈N)1⇒p=3k+1(k∈N).
Khi đó: 8p+1=8.(3k+1)+1=24k+9=3.(8k+3)⋮38p+1=8.(3k+1)+1=24k+9=3.(8k+3)⋮3
⇒⇒ 8p+18p+1 là hợp số (trái với giả thiết).
Do đó pp chia 3 dư 2, hay p=3k+2 (k∈N)p=3k+2 (k∈N)
Khi đó: 8p−1=8.(3k+2)−1=24k+15=3.(8k+5)⋮3⇒8p−1=8.(3k+2)−1=24k+15=3.(8k+5)⋮3⇒ 8p−18p−1 là hợp số.
Vậy, nếu 8p+18p+1 và pp đều là số nguyên tố thì 8p−18p−1 là hợp số.
+) Với pp và 8p−18p−1 là số nguyên tố thì ta có:
∙∙ Xét p=2p=2. Khi đó ta có:
8p−1=8.2−1=158p−1=8.2−1=15 là hợp số (trái với giả thiết)
∙∙ Xét p=3p=3. Khi đó ta có:
8p−1=8.3−1=238p−1=8.3−1=23 là số nguyên tố, 8p+1=8.3+1=25⋮58p+1=8.3+1=25⋮5 là hợp số.
Vậy bài toán đúng với p=3p=3
∙∙ Xét p≠3p≠3. Vì pp là số nguyên tố nên pp không chia hết cho 33.
Giả sử pp chia 33 dư 2⇒p=3k+2(k∈N)2⇒p=3k+2(k∈N).
Khi đó: 8p−1=8.(3k+2)−1=24k+16−1=24k+15=3.(8k+5)⋮38p−1=8.(3k+2)−1=24k+16−1=24k+15=3.(8k+5)⋮3
⇒⇒ 8p−18p−1 là hợp số (trái với giả thiết).
Do đó pp chia 3 dư 1, hay p=3k+1 (k∈N)p=3k+1 (k∈N)
Khi đó: 8p+1=8.(3k+1)+1=24k+9=3.(8k+3)⋮3⇒8p+1=8.(3k+1)+1=24k+9=3.(8k+3)⋮3⇒ 8p+18p+1 là hợp số.
Vậy, nếu 8p−18p−1 và pp đều là số nguyên tố thì 8p+18p+1 là hợp số
Cho p và 8p - 1 là các số nguyên tố . Chứng minh rằng 8p + 1 là hợp số .
* Nếu p = 3 \(\Rightarrow\) 8p - 1 = 23 là nguyên tố , 8p + 1 = 25 là hợp số ( thỏa mãn )
* Xét : p # 3
Ta thấy : p - 1 , p , p + 1 là 3 số nguyên liên tiếp , nên phải có 1 số chia hết cho 3 .
p nguyên tố khác 3 nên p - 1 hoặc p + 1 chia hết cho 3 \(\Rightarrow\) ( p - 1 ) ( p + 1 ) chia hết cho 3 .
Vậy : ( 8p - 1 ) ( 8p + 1 ) = 64p2 - 1 = 63p2 + p2 - 1 = 3 . 21p2 + ( p - 1 ) ( p + 1 ) chia hết cho 3 .
Vì 8p - 1 là số nguyên tố lớn hơn 3 \(\Rightarrow\) 8p + 1 chia hết cho 3 , hiển nhiên 8p + 1 > 3
\(\Rightarrow\) 8p + 1 là hợp số .
Bạn tham khảo bài của mình nhé !!
Quan trọng thay mặt người phân phối chương trình xin tặng chương trình học online số 1 Việt Nam. Sự kiện bắt đầu từ ngày 28/10 đến 1/11
Xin chào các thành viên đang online trên trang. Sự kiện khuyến mãi được tài trợ 500 suất áo chiếc áo đá bóng Việt Nam.Mong tất cả mọi người đã xem vào truy cập sau để nhận thưởng khi xem có 1 bản đăng kí nhận miễn phí : Thời gian có hạn tặng mọi người đã tham gia tích cực -> Không tin các bạn có thể hỏi các CTV nha mình chỉ có quyền thông báo :
Copy cái này hoặc gõ :
https://lazi.vn/quiz/d/16491/nhac-edm-la-loai-nhac-the-loai-gi
Bài giải
Ta có: 3n - 5 \(⋮\)n + 1
=> 3(n + 1) - 8 \(⋮\)n + 1
Vì 3(n + 1) - 8 \(⋮\)n + 1 và 3(n + 1) \(⋮\)n + 1
Nên 8 \(⋮\)n + 1
Tự làm tiếp nha ...
Ta có: 4n + 3 \(⋮\)n - 1
=> 4(n - 1) + 7 \(⋮\)n - 1
Vì 4(n - 1) + 7 \(⋮\)n - 1 và 4(n - 1) \(⋮\)n - 1
Nên 7 \(⋮\)n - 1
.................
bạn vào link này nha : https://h7.net/hoi-dap/toan-6/chung-minh-neu-p-va-8p-2-1-la-hai-so-nguyen-to-thi-8p-2-1-la-so-nguyen-to-faq427549.html
Với p=2(không thỏa mãn)
Với p=3thỏa mãn\(8p^2-1\) và \(8p^2+1\)là số nguyên tố
-Với p>3=>p có dạng 3k+1 hoặc 3k+2 (\(k>0k\in N\))
xét p=3k+1=>\(8p^2-1=8\left(3k+1\right)^2\) là số lớn hơn 33 và chia hết cho 33 do k nguyên dương(vô lí)
xét p=3k+2=>\(8p^2-1=8\left(3k+2\right)^2\) là số lớn hơn 33 và chia hết cho 33 do kk nguyên dương(vô lí)
Vậy p=3 thỏa mãn yêu cầu bài ra.
CHÚC BẠN HỌC TỐT !!