Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Nếu ý bạn là ||3x-3|+2x+(-1)2016 |=3x+20170 thì bạn có thể tham khảo:https://h.vn/hoi-dap/question/514972.html
Nhưng nếu ý bạn là pt thế này thì... áp dụng tương tự nhé! Khổ hơn thôi :V
2) Đây là nơi bạn cần tìm: https://h.vn/hoi-dap/question/562808.html
Học tốt nhé ^3^
Bài 1 :
\(\left||3x-3|+2x+\left(-1\right)\left(2016\right)=3x+20170\right|\)
\(\Leftrightarrow\orbr{\begin{cases}\left|3x-3\right|+2x-2016=3x+20170\\\left|3x-3\right|+2x-2016=-3x-20170\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\left|3x-3\right|=3x-2x+2016+20170\\\left|3x-3\right|=-3x-20170-2x+2016\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\left|3x-3\right|=x+22186\\\left|3x-3\right|=-5x-18154\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}3x-3=x+22186\\3x-3=-x-22186\end{cases}}\)hoặc \(\orbr{\begin{cases}3x-3=-5x-18154\\3x-3=5x+18154\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}3x-x=22186+3\\3x+x=3-22186\end{cases}}\)hoặc \(\orbr{\begin{cases}3x+5x=3-18154\\3x-5x=3+18154\end{cases}}\)
Còn lại tự làm nốt nhá !
Tìm giá trị lớn nhất của biểu thức:
\(Q=5-\sqrt{x^2-6x+14}\)
Mọi người giúp mk với!!! mk đang cần gấp!
#)Giải :
a) \(A=\left(\frac{\sqrt{x}}{2}-\frac{1}{2\sqrt{x}}\right)\left(\frac{x\sqrt{x}}{\sqrt{x}-1}-\frac{x+\sqrt{x}}{\sqrt{x}-1}\right)\)
\(=\frac{x-1}{2\sqrt{x}}\left(\frac{\sqrt{x}\left(\sqrt{x}-1\right)^2-\sqrt{x}\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)
\(=\frac{x-1}{2\sqrt{x}}.\frac{x\sqrt{x}-2x+\sqrt{x}-x\sqrt{x}-2x-\sqrt{x}}{x-1}\)
\(=\frac{-4}{2\sqrt{x}}=-2\sqrt{x}\)
tính ra \(\Delta\)=(m+1)2+3>0 (vì (m+1)2\(\ge\)0)
theo hệ thức vi-et ,có
S=x1+x2=m+1
P=x1x2=-3
có P=\(\frac{-6}{x_1^2+x_2^2+x_1x_2}=\frac{-6}{\left(x_1+x_2\right)^2-x_1x_2}\)=\(\frac{-6}{\left(m+1\right)^2-\left(-3\right)}=\frac{-6}{\left(m+1\right)^2+3}\)
vì (m+1)2\(\ge\)0,\(\forall m\)<=>(m+1)2+3\(\ge\)3
\(\Leftrightarrow\frac{1}{\left(m+1\right)^2+3}\le\frac{1}{3}\Leftrightarrow\frac{-6}{\left(m+1\right)^2+3}\ge-2\)=>min P=-2<=>m=-1
c) Đk: x \(\ge\)0; x \(\ne\)4; x \(\ne\)9
A = \(-\frac{1}{\sqrt{x}-3}\) => -2A = \(\frac{2}{\sqrt{x}-3}\)
Để -2A thuộc Z <=> \(2⋮\sqrt{x}-3\)
<=> \(\sqrt{x}-3\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
Lập bảng:
\(\sqrt{x}-3\) | 1 | -1 | 2 | -2 |
x | 8 | 4 (ktm) | 25 | 1 |
Vậy ....